Prey populations: the only thing to fear is fear itself

In reference to the Great Depression, Franklin Delano Roosevelt is famously quoted as stating during his 1933 inaugural speech “the only thing we have to fear is fear itself.” Roosevelt was no biologist, but his words could equally apply to a different type of depression – the decline of animal populations that can be caused by fear.

FDR

Roosevelt’s inauguration in 1933. Credit: Architect of the Capitol.

Ecologists have long known that predators can depress prey populations by killing substantial numbers of their prey. But only in the past two decades or so have they realized that predators can, simply by their presence, cause prey populations to go into decline. There are many different ways this can happen, but, in general, a predation threat sensed by a prey organism can interfere with its feeding behavior, causing it to grow more slowly, or to starve to death. As one example, elk populations declined after wolves were introduced to Yellowstone National Park. There are many factors associated with this decline, but one factor is fear of predators causes elk to spend more time scanning and less time foraging. Also, elk tend to stay away from wolf hotspots, which are often places with good elk forage.

Liana Zanette recognized that ecologists had not considered whether predator presence can cause bird or mammal parents to reduce the amount of provisioning they provide to dependent offspring, thereby reducing offspring growth and survival, and slowing down population growth. For many years, she and her colleagues have studied the Song Sparrow, Melospiza melodia, on several small Gulf Islands in British Columbia, Canada. In an early study, she showed that playbacks of predator calls reduced parental provisioning by 26%, resulting in a 40% reduction in the estimated number of nestlings that fledged (left the nest). But, as she points out, Song Sparrow parents provision their offspring for many days after fledging; she wondered whether continued perception of a predation threat during this later time period further decreased offspring survival and ultimately population growth.

Song sparrow

The Song Sparrow, Melospiza melodia. Credit: Free Software Foundation.

Zanette’s student, Blair Dudeck, did much of the fieldwork for this study. The researchers captured nestlings six days after hatching , weighed and banded them, and fit them with tiny radio collars. They then recaptured and weighed the nestlings within a few hours of fledging (at about 12 days post-hatching) to assess nestling growth rates.

sparrowbaby

Banded sparrow nestling with radio antenna trailing from below its wing. Credit: Marek C. Allen.

Three days after the birds fledged, Dudeck radio-tracked them, and surrounded them with three speakers approximately 8 meters from where they perched. For one hour, each youngster listened to recordings of calls made by predators such as ravens or hawks, followed, after a brief rest period, by one hour of calls made by non-predators such as geese or woodpeckers (or vice-versa). During the playbacks, Dudeck observed the birds to record how often the parents visited and fed their offspring, and whether offspring behavior changed in association with predator calls. This included recording all of the offspring begging calls.

BlairRadio

Blair Dudeck simultaneously uses a tracking device to locate Song Sparrows and a recorder mounted to his head to record their begging calls. Credit: Marek C. Allen.

Fear had a major impact on parental behavior. Parents reduced food provisioning vists by 37% when predator calls were played in comparison to when non-predator calls were played. They also fed offspring fewer times per visit, which resulted in 44% fewer meals in association with predator calls.

DudeckFig1

Mean number of parental provisioning visits (in one hour) in relation to whether predator (red) or non-predator (blue) calls were played. Error bars are 1 SE.

Hearing predator calls had no effect on offspring behavior – they continued to beg for food at a high rate, and did not attempt to hide.

Some parents were much more scared than others – in fact, some parents were not scared at all. The researchers measured parental fearfulness by subtracting the number of provisioning visits by parents during predator calls from the number of visits during non-predator calls. A more positive number indicated a more fearful parent (a negative number represents a parent who fed more in the presence of predator calls). The researchers discovered that more fearful parents tended to have offspring that were in poorer condition at day 6 and at fledging.

DudeckFig2

Offspring weight on day 6 (open circles) and at fledging (solid circles) in relation to parental fearfulness.  Higher positive numbers on x-axis indicate increasingly fearful parents.

Importantly, more fearful parents tended to have offspring that died at an earlier age. Based on this finding, the researchers created a statistical model that compared survival of offspring that heard predator playbacks throughout late-development with survival of offspring that heard non-predator playbacks during the same time period. They estimated a 24% reduction in survival. Combined with their previous study on playbacks during early development, the researchers estimate that hearing predator playbacks throughout early and late development would reduce offspring survival by an amazing 53%.

This “fear itself” phenomenon can extend to other trophic levels in a food web. For example recent research by Zanette and a different group of researchers showed that playbacks of large carnivore vocalizations dramatically reduced foraging by raccoons on their major prey, red rock crabs. When these carnivore playbacks were continued for a month, red rock crab populations increased sharply. This increase in crab population size was followed by a decline of the crab’s major competitor – the staghorn sculpin, and the crab’s favorite food, a Littorina periwinkle. Thus “fear itself” can cascade through the food web, affecting multiple trophic levels in important ways that ecologists are now beginning to understand.

note: the paper that describes this research is from the journal Ecology. The reference is Dudeck, B. P., Clinchy, M., Allen, M. C. and Zanette, L. Y. (2018), Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology, 99: 127–135. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Successful scavengers

Scavengers have a bad reputation. They reputedly eat foul smelly stuff, and are too lazy or incompetent to track down prey on their own, depending on “noble” beasts such as lions to kill prey, and then sneaking a few bites when the successful hunters are not looking (or after they’ve stuffed themselves). Of course the reality is that scavenging is simply one way that animals make a living. Many different species, including lions, will scavenge if given the opportunity, and from a human perspective, scavengers provide several important ecosystem services. As one example described by Kelsey Turner and her colleagues, ranchers in parts of Asia gave diclofenac, a non-steroidal anti-inflammatory drug, to their cattle, which had the unintended consequence of killing much of the vulture community. Losing vultures from the scavenging community increased the prevalence of rotting carcasses, which caused feral dog and rat populations to skyrocket, resulting in a sharp increase of human rabies cases in India. The take-home message is that we need to understand what factors influence scavenging behavior and scavenging success.

Turner1

Golden eagle overwintering in South Carolina scavenges a pig carcass in a clearcut. Credit: Kelsey Turner.

Turner and her colleagues were particularly interested in whether the size of a carcass, the habitat in which an animal dies, and the time of year, influence scavenging dynamics.   The researchers varied carcass size by using three different species: rats (small), rabbits (medium) and pigs (large). Habitats were clearcuts, mature hardwood, immature pine, and mature pine forest. Time of year was divided into two seasons: warm (May – September) and cool (December – March). I should point out that the cool season was mild by many standards, as the research was conducted at the Savannah River Site in South Carolina, with a mean winter temperature of about 10 ° C.

TurnerFieldSite

Map of Savannah River Site showing the study sites and diverse habitats.

The researchers collected data by laying down carcasses of varying size in each of the habitats in both summer and winter. Each carcass was observed by a remote sensing camera that captured the scavenging events, allowing the researchers to identify the species of each scavenger and how long it took for the carcass to be detected and consumed.

Turner5

Two coyotes captured by a remote sensing camera scavenging a pig carcass on a rainy day. Credit: Kelsey Turner.

Scavengers discovered 88.5% of the carcasses placed during the cool season, but only 65.4% of carcasses placed during the warm season. Carcass size was also important, with only 53.9% of rats detected, in contrast to 78.5% of rabbits and 97.8% of pigs detected. But habitat interacted with these general findings: for example scavengers consumed all (23) rabbits in clearcuts, but only about 70% of rabbits placed in the other three habitats.

Detection time also varied with carcass size; in general scavengers found pigs more readily than rats or rabbits. As the graphs below show, this relationship was quite complex. Pigs were detected much more quickly than the smaller carcasses in clearcuts, and somewhat more quickly in mature pine. Additionally, this difference between pigs and the other species is stronger in the warm season (left graph) than in the cool season (right graph). In fact, there is no difference in detection time of pigs, rabbits and rats placed in mature pine during the cool season.

EcologyFig1Turner

Natural log of mean detection time (in hours) of rat, rabbit and pig carcasses in warm season (left) and cool season (right) in different habitats.  CC = clearcut, HW = mature hardwood, IP = immature pine, MP = mature pine.

Not surprisingly pigs tended to persist longer (before being totally consumed) than the other two species. More strikingly, persistence time for all three species was much greater in the cool season than in the warm season.

EcologyFig3Turner

Natural log of mean carcass persistence time (in hours) of rat, rabbit and pig carcasses during the cool and warm seasons.

Turner and her colleagues identified 19 different scavenger species; turkey vultures, coyotes, black vultures, Virginia opossums, raccoons and wild pigs were the most frequent. The first scavengers to detect pig carcasses were usually turkey vultures (76.0%) or coyotes (17.3%). An average of 2.8 different species scavenged at pig carcasses, in contrast to 1.5 at rabbit carcasses and 1.04 at rat carcasses. As you might imagine, most scavengers made short work of rat carcasses, so there was not much opportunity for other individuals or species to move in. Carcasses that persisted longer generally had a greater diversity of scavengers; for example, carcasses scavenged by 1, 2 or 3 species persisted, on average, for 90.5 hours, while those scavenged by 4, 5 or 6 species persisted, on average for 216.5 hours.

vultures_pigcarcass

A flock of turkey vultures in a clearcut surround and scavenge a pig carcass. Credit: Kelsey Turner.

Early ecologists viewed feeding relationships within an ecological community as a linear process in which plants extract nutrients from soils and calories from the air, which they pass onto herbivores and then to carnivores, with considerable energy being lost in each transfer. Now, we use a food web perspective, which considers the essential contributions of scavengers and decomposers (among others) to these feeding relationships. Carcasses decompose much more quickly during the warm season, returning calories and nutrients to lower levels of the food web. Microbial decomposers are, in essence, competing with vertebrates for carcasses, and being metabolically more active in warm months, are able to extract a greater portion of the resources from the carcass than they can during the winter. Slow decomposition in winter allows longer carcass persistence, leading to a greater number and greater diversity of scavengers. As a bonus for those who believe in human primacy, these same scavengers help to create a cleaner and healthier world.

note: the paper that describes this research is from the journal Ecology. The reference is Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. and Beasley, J. C. (2017), Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology, 98: 2413–2424. doi:10.1002/ecy.1930. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Treefall gaps deliver diversity

When John Terborgh began research at Cocha Cashu Biological Station in Peru back in 1974, he probably did not expect to still be working there 43 years later, doing research and publishing papers about the astounding species diversity in its tropical floodplain rainforest.

JT_TreefallLisa Davenport

John Terborgh leans against a fallen tree that has created a gap in the forest canopy. Credit: Lisa Davenport.

One contributor to species diversity in tropical forests is treefall gaps, which form when a mature tree falls down, opening up a gap in the overhead canopy. The most obvious change associated with treefall gaps is an increase in light that reaches the canopy floor. In comparison to the closed canopy, treefall gaps may be dryer, warmer, have increased plant transpiration rates, and may host many different species that colonize the new environment.

Treefallgap Irina Skinner

Small treefall gap in a dense rainforest. Credit: Irina Skinner

While it’s clear that gaps influence the physical environment of the forest floor, it is not clear how a changed physical environment translates to biological diversity of the treefall gap community. Comparing treefall gaps to closed canopy communities, Terborgh and his colleagues explored this relationship.

First the researchers asked whether the seed rain into tree gap communities is different from the seed rain into closed canopy communities. Seed rain describes the types and abundance of seeds that are dispersed into communities. Usually seeds are blown into communities by the wind, or enter attached to the bodies or excrement of animals. Alternatively, some seeds are autochorous – self-dispersing, in some cases aided by a change in fruit shape that causes seeds to be ejected explosively.

To do this analysis Terborgh and his colleagues needed a systematic way to measure seed rain. The researchers set up a regularly-spaced grid of small containers (seed traps) that collected a portion of the seeds that entered the community. They also needed a way to describe whether the canopy was closed, somewhat open, or very open as in a treefall gap. For each seed trap they calculated a canopy cover index (CCI), which measured the amount of vegetation found at different levels directly above the traps. A value of 0 indicated no vegetation (a completely open canopy), while a value of 6 indicated dense vegetation at all levels (a completely closed canopy).

As the graphs below indicate, there were some dramatic differences between gaps and canopies. Note that the x-axis has been log-transformed so CCI = 1 transforms to a log(CCI) = 0, and a CCI = 6 transforms to log(CCI) = 0.778. All four major groups of animal seed dispersers dispersed many more seeds into closed canopy forest than into treefall gaps. The relationship between seed abundance and canopy cover was strikingly linear for primates and small arboreal animals. This makes sense, as these animals tend to sit on trees, and spread seeds either through defecation of already eaten fruit, or by eating fruits and inadvertently spilling some seeds in the process. So very few trees in treefall gaps translates to many fewer seeds in treefall gaps, with most (76%) being blown in by the wind.

TerbprghFig2

The log abundance of potentially viable seeds (PV seeds on y-axes) collected in seed traps in relation to the log (canopy cover index) for six different types of seed dispersal agents/mechanisms.

Terborgh and his colleagues realized that differences in seed dispersal could profoundly influence the number and types of plants that were recruited into the population. Despite the scarcity of animals in tree fall gaps, most of the saplings (79%) that recruited into gaps were animal dispersed, whereas wind-dispersed species made up only 1% of the saplings.

Sapling species diversity was greater under a closed canopy.

TerborghFig5scanpub

Sapling species diversity (measured as log(Fisher’s alpha)) in relation to canopy cover (measured as log (canopy cover index)).

Though species diversity was lower in tree fall gaps in comparison to the closed canopy, species composition (the types of species found there) was very different in treefall gaps. There were many species that recruited only under gaps, and were never found under a closed canopy. Interestingly, there is good evidence that the small treefall gaps in this study recruited a different set of tree species than do larger treefall gaps, which tend to recruit species that do best under conditions of very bright sunlight. Thus the researchers conclude that treefall gaps, small and large, offer a wide range of environmental conditions not found in the closed canopy,  that ultimately help to promote astoundingly high tropical forest tree diversity.

note: the paper that describes this research is from the journal Ecology. The reference is Terborgh, J., Huanca Nuñez, N., Alvarez Loayza, P. and Cornejo Valverde, F. (2017), Gaps contribute tree diversity to a tropical floodplain forest. Ecology, 98: 2895–2903. doi:10.1002/ecy.1991. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Blinded by the light: victims of the night

In late October, the municipality of Buenavista del Norte on the Canary Island of Tenerife, celebrates the day of the Virgin of Los Remedios, including, among other features, a big light display. As a child, Airam Rodríguez noticed that many shearwaters would also drop in (literally) for the festivities, attracted by the bright lights, but unable, in many cases, to get back in the air. Many of these shearwaters died from a variety of causes, including the impact of flying into the ground, dehydration, predation and poaching. As an adult, Rodríguez collaborated with researchers around the world to evaluate the scope of light-induced shorebird fallout.

short-tailed-shearwater-fledgling-grounded-by-lights-photo-airam-rodrc3adguez.png

Fallout victim: grounded Short-tailed Shearwater. Credit: Airam Rodríguez

The researchers began their work by searching a science citation index – the Web of Science – for articles on light-induced seabird mortality. They used references from these articles to find additional articles. In addition, they used the internet and social media to find programs in which citizens are encouraged to report grounded birds, and contacted people associated with these programs to get qualitative and quantitative data.

Rodríguez and his colleagues discovered light induced seabird fatality on 47 islands, three continental locations and across all of the world’s oceans. Of 115 species of burrow-nesting petrels, 56 have been reported as grounded by light. Several other groups of birds, including puffins, auklet and eiders also suffer from light-induced fallout, and it is very likely that more species are unreported.

RodriguezFig1

Numbers of reported grounded seabird fledglings across the globe.  Circle size = numbers of birds  reported. Numbers = number of species affected. Circle color = IUCN (endangerment) category for each species as follows: CR = critically endangered, EN = endangered, VU = vulnerable, NT = near threatened, LC = least concern.

Of deep concern is that 24 species are globally threatened. In addition, fallout has been reported at sea, induced by lights used for fisheries and by lights on oil platforms. All of the studies of light-induced fatalities on land documented the highest mortality in fledglings that are grounded during their first flights from their nests toward the ocean.

RodriguezFig2

Numbers of species of threatened seabirds that were rescued across the globe.  Numbers were not available for species with ? symbol.

Researchers don’t know why birds are attracted to lights. Perhaps birds view lights as a source of food; for example some species eat bioluminescent prey. Alternatively, as cavity-nesting birds, the only light these chicks see is from their burrow entrance, particularly when their parents bring in food, so the fledglings might confuse light with a food source. Lastly, artificial lights might override any celestial light cues the birds normally use for navigation, confusing them and causing them to crash to the ground. Supporting this hypothesis, seabirds generally don’t crash into lights, which might be expected if they mistook a light for bioluminescent prey.

Cory's shearwater fledgling at their nest at Tenerife Canary Islands. Photo by Beneharo Rodríguez

Fledgling Cory’s Shearwater first sees the light of day after emerging from its burrow at Arona on southern Tenerife Island. Credit: Beneharo Rodríguez

So what can be done about this problem? Accurate data are hard to come by, as many estimates of fallout-induced mortality come from relatively untrained volunteers, who are less likely to report dead birds. As one example, on Kauai, surveys from a general public rescue program for Newell’s Shearwaters identified 7.7% mortality, whereas later systematic surveys by trained researchers indicated 43% mortality. In some rescue operations, birds are banded and released, which, in theory, allows researchers to estimate the survival rate of rescue birds, but, in practice, these data are usually insufficient for accurate estimates

Rodríguez and his colleagues recommend a multipronged approach to combat seabird fallout. Individuals grounded by artificial lights can be rescued so they don’t succumb to the common causes of death – dehydration, predation and vehicle collision. In many cases the general public takes birds to designated rescue stations, where they are cared for until judged to be ready to release. The first rescue program was set up on Kauai in 1978; since then, people working for 16 rescue programs have released over 40,000 birds.

Release of a grounded shearwater. Photo Nazaret Carrasco (1)

Beneharo Rodríguez releases a Cory’s Shearwater from a cliff at Buenavista del Norte on Tenerife Island. Credit: Nazaret Carrasco.

The birds would be best served if humans behaved in ways that minimized fallout. Researchers need to learn more about why birds are attracted to artificial lights so engineers can develop outside lights that don’t attract them. Existing lights can be turned off when not needed, and dimmed when they are essential. Special accommodation can be made for unusual cases; for example in Cilaos, Reunion, Indian Ocean, streetlights are turned off during the fledging period of Barau’s Petrel. Lights can also be shielded so they illuminate an area for humans, but minimize the light visible to birds. Degraded nesting and breeding habitat can be restored to help compensate for birds that are lost to fallout. Lastly, conservation efforts should benefit the local economies so that residents will be more likely to support conservation initiatives, such as reduced evening lighting, that they might otherwise oppose.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Rodríguez, A., Holmes, N. D., Ryan, P. G., Wilson, K.-J., Faulquier, L., Murillo, Y., Raine, A. F., Penniman, J. F., Neves, V., Rodríguez, B., Negro, J. J., Chiaradia, A., Dann, P., Anderson, T., Metzger, B., Shirai, M., Deppe, L., Wheeler, J., Hodum, P., Gouveia, C., Carmo, V., Carreira, G. P., Delgado-Alburqueque, L., Guerra-Correa, C., Couzi, F.-X., Travers, M. and Corre, M. L. (2017), Seabird mortality induced by land-based artificial lights. Conservation Biology, 31: 986–1001. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Cat and fox: agents of Australian extinctions

Australia’s drylands are famous for their assemblage of ultra-cool mammals. As one example, it is difficult for us non-Australians to imagine a more endearing creature than the rock-wallaby pictured below.

Black-foted Rock-wallaby

Black-footed rock wallaby. Credit: Peter McDonald.

Unfortunately, numerous species of Australia’s dryland mammals are going extinct. Many of these extinct species weigh between 35 and 5500 grams – a weight range that researchers have described as the critical weight range (CWR). Peter McDonald and his colleagues wanted to know what was causing these extinctions, and why were they most prevalent in the CWR. They considered two hypotheses. First, perhaps the land was becoming less productive, either from habitat destruction by humans, or as a result of changing climate. Reduced plant abundance could cause herbivorous mammals to go extinct. An alternative hypothesis is that perhaps newly introduced predators, notably feral cats and red foxes, were killing the native mammals so effectively, that they were disappearing from the Ausralian drylands.

Previous research indicated that extinction rates were lower in areas that had more species living in trees and around rocks, leading McDonald to think that maybe habitat was influencing extinctions in important ways. In particular, he realized that rugged mountainous areas might have fewer predacious cats and foxes, and secondly that these two predators tend to go for prey within the CWR. Putting these ideas together, perhaps mountainous areas are refuges for Australia’s dryland CWR species, protecting them from predator-driven extinction. If so, mammal species richness would be highest in rugged, protected areas, and lowest in more open areas. If, on the other hand, mammals are going extinct because overall productivity is declining, we would expect overall species richness to be greatest in the most productive areas.
McDonald and his colleagues tested these two competing hypotheses by censusing mammals in four different types of habitats in Tjoritja National Park within the MacDonnell Range of central Australia. These were (1) mountain areas dominated by a sparse assemblage of shrubs and clumps of spinifex grass, (2) spinifex grasslands (with a more abundant cover of spinifex than found in the mountains), (3) Acacia shrublands, and (4) alluvial woodlands, which were most productive with richest soils.

 

 

Mountain refuge habitat_PeterMcDonald

Mountains. Credit: Peter McDonald

 

spinifex

Spinifex grasslands

acacia

Acacia shrubland

alluvial

Alluvial woodland

The researchers set up a variety of different mammal traps in 90 different sites representing these four habitats to capture and identify small mammals, and they detected larger mammals by searching for fresh scat at each site. The researchers estimated productivity with the normalized difference vegetation index (NDVI), which uses satellite imagery to measure the green-ness, and hence productivity, of a site or region.

In support of the predation hypothesis, more mammal species were found in the most rugged terrain.

McDonaldFig1A

Number of mammal species per site in relation to ruggedness of terrain. The curve is the fitted value of the regression equation.  The shaded area represents the 95% confidence interval.

In contrast to the productivity hypotheses, fewer mammal species were found in the most productive sites

McDonaldFig1c

Number of mammal species per site in relation to productivity of terrain as measured by the NDVI. The curve is the fitted value of the regression equation.  The shaded area represents the 95% confidence interval.

While it’s useful to evaluate both hypotheses by measuring current species richness, the researchers also needed to know how many species were actually driven to extinction in the time since cats and foxes invaded. They reconstructed historic species richness for each habitat based on subfossil remains (remains of organisms that are only partially fossilized), from indigenous knowledge supplied by aboriginal Australians, and from historical accounts in the early literature.

They discovered that CWR extinctions were most prevalent in alluvial (12/12 species) and acacia (7/7 species) habitats. Spinifex habitas lost 5/6 CWR species, while mountainous habitats only lost 2/6 CWR species. Importantly, species outside of the CWR have survived relatively well in all habitats, further implicating cats and foxes as the agents of extinctions.

McDonaldFig2

Current (extant) and historic (pre-invasion by cats and foxes) mammalian species richness in the four habitats. The dots are the mean weight, and the lines are the weight ranges for each species.  The shaded area represents the critical weight range (CWR)

More support for the the predation-habitat link comes from recent research that indicates that red foxes are absent from the mountain habitat, while feral cats are substantially less abundant. Even when present, cats are much less efficient hunters in the mountain habitat because the complex rock structure affords more refuges to prey items.

Feral cat with fat-tailed antechinus_NTG

Feral cat captured on camera with a fat-tailed Antechinus. Credit Tony Griffiths.

Across Australia, many CWR species have gone extinct in regions colonized by cats and foxes. McDonald and his colleagues provide solid evidence that these introduced predators are responsible for these extinctions. They urge researchers to explore other mountainous regions in Australia to see if they too are acting as refuges for CWR mammals.

note: the paper that describes this research is from the journal Conservation Biology. The reference is McDonald, P. J., Nano, C. E. M., Ward, S. J., Stewart, A., Pavey, C. R., Luck, G. W. and Dickman, C. R. (2017), Habitat as a mediator of mesopredator-driven mammal extinction. Conservation Biology, 31: 1183–1191. doi:10.1111/cobi.12905. doi:10.1111/cobi.12908. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

River restoration responses

The Lippe River in Germany has been subjected to many decades of channelization, deepening, floodplain drainage, straightening and consequent shortening, with one result being that the modern Lippe is 20% shorter than it was two centuries ago. Beginning in 1996, conservation managers began reversing this trend by widening the river, raising the level of the river bed, constructing small islands within the river and terminating floodplain drainage operations over a stretch of 3.3 km. As a result of these activities, a small portion of the river looks much like it did 200 years ago.

rivrestfig1

A section of the Lippe River before (left) and after (right) restoration.

Over a 21-year period, researchers from Arbeitsgemeinschaft Biologischer Umweltschutz have conducted systematic surveys of fish communities at the restored and unrestored sections of the river. Researchers sampled the fish community with electrofishing – inputting a direct electrical current into the river – which causes the fish to swim towards the boat where they are easily collected with nets, identified by species, and returned unharmed into the river. A data set over this length of time in association with a restoration project is very unusual; oftentimes (in part due to funding issues) only one survey is conducted to assess the fish community response to river restoration.

About eight years ago, while a postdoctoral researcher at Senckenberg Research Institute in Frankfurt, Germany, Stephan Stoll was asked to analyze some river restoration outcomes, and, as he describes, “became hooked to the topic.” To evaluate the response of the Lippe River fish community to restoration, a group of researchers headed by Stephanie Höckendorff, a Master’s student with Stoll, first asked a very simple question – how did fish abundance and species richness (the number of fish species) compare in the restored and unrestored regions of the river.

The graph below shows several striking trends. Abundance peaked about 2-3 years after restoration, declined sharply the next year, and recovered in subsequent years to about three times the abundance found in unrestored sections. Importantly, abundance varied extensively year-to-year. For example, if you had done only one survey in 2000, you would have erroneously concluded that restoration had no effect, which is why the researchers emphasize the importance of collecting data over a long stretch of time.

rivrest2a

Abundance of fish in restored (Rest-gray curve) and unrestored (Cont-black curve) sections of the Lippe River.  The gray vertical bar indicates the start of the restoration project in 1997.

Species richness increased sharply, but did not reach its peak until nine years after restoration. Again, there was extensive year-to-year variation in species richness.

rivrest2b

Fish species richness in restored (Rest-gray curve) and unrestored (Cont-black curve) sections of the Lippe River.  The gray vertical bar indicates the start of the restoration project in 1997.

Höckendorff and her colleagues were intrigued by this delay in species richness, and turned their attention to understanding what types of species benefited most from the restoration. Their analyses indicated that colonizing species, such as common minnows and three-spined sticklebacks, tended to have short life spans, early female maturity, several spawning events per year and a fusiform body shape – a body that is roughly cylindrical and tapers at both ends. Interestingly, some of the most successful colonizers took quite a long time to get well-established within the community.

Minnow

Common minnows, Phoxinus phoxinus. Credit: Carlo Morelli (Etrusko25)

Stickleback

The three-spined stickleback, Gasterosteus aculeatus. Credit: Ron Offermans

The restored habitat was highly dynamic, experiencing periodic flooding and the formation of temporary shallow bays and shifting sandbanks. These types of habitats tend to select for minnows, sticklebacks and other opportunistic species that are attracted to periodic disturbances. These opportunistic species were quick to move in, and continued to increase in abundance over time. Importantly, several rare and endangered species also colonized the restored habitat. However, large, deep-bodied, slow maturing and long-lived species did not benefit (at least over the 17 years of the survey), as these types of species are generally favored in less dynamic habitats, which are more stable and uniform.

Overall, these findings demonstrate the benefits of river restoration to the fish communities they harbor. But some species are more likely to benefit than others, and the time-scale over which recolonization occurs is highly variable. Surveys must be repeated over a long time-scale to tell conservation managers whether their restoration efforts are successful, and how they might change their future river restoration efforts.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Höckendorff, S., Tonkin, J. D., Haase, P., Bunzel-Drüke, M., Zimball, O., Scharf, M. and Stoll, S. (2017), Characterizing fish responses to a river restoration over 21 years based on species’ traits. Conservation Biology, 31: 1098–1108. doi:10.1111/cobi.12908. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Sushi in Disguise

As an ecology researcher, I’ve always been attracted to systems where you might be able or inclined to eat your organism after you completed your experiment or observations. Alas, I spent my research career studying spiders, dragonflies and zebrafish, all of which are high on nutrients but low on succulence. Thus I read with considerable gastronomic anticipation an article by Demian Willette and his colleagues that studied nine different species of fish served up at local sushi restaurants in Los Angeles, California.

Sushi

Mackerel, salmon and tuna (front to back) served at a Los Angeles sushi restaurant. Credit Demian Willette.

One of the co-authors, Sara Simmonds, had a great idea when she was a teaching assistant for the Introduction to Marine Science course at UCLA in 2012. Simmonds suggested that students in the class could investigate whether seafood served at sushi restaurants were always what they claimed to be, or might they sometimes travel under false identities. For example, is red snapper (which does not occur in California waters) really red snapper, or might merchants substitute one of 13 rockfish species in its stead? This project allowed students to investigate a real world marine-related topic, while also getting some experience using and applying molecular genetics tools.

Over the course of the four-year study, students ordered sushi from 26 different restaurants, confirmed the species identification with the wait-staff, and collected tissue samples from each order. They then subjected the samples to DNA barcoding, which amplifies and sequences an approximately 650 base pair segment of the mitochondrial COI gene. Once they determined the DNA sequence, students then compared it with known sequences using the Basic Local Assignment Search Tool database (National Center for Biotechnology Information).

Each year, between 40 and 52% of the fish were mislabeled. Though previous studies by other researchers had identified mislabeling, Willette and his colleagues were surprised that all 26 restaurants had at least one case of mislabeling, and that the mislabeling rate was so consistent from one year to the next.

SushiFig1

Percentage of sushi mislabelled (left y-axis – bar symbol) and number of restaurants sampled (right y-axis – diamond symbol) by year.  Number in bar is sample size for that year.

Overall substitution rates varied dramatically from one species to another. All fish species, except bluefin tuna, were mislabeled at least once, and two species – red snapper and halibut – were always mislabeled. Red snapper was often replaced with red seabream, while halibut was usually replaced with flounder.

SushiFig2

Percentage mislabeled (+ standard error) for each species in the study. Numbers above bars are number mislabeled (left) and total sample (right).  For example 6 out of 47 salmon were mislabeled.

Why should we care if we’re served the wrong species of fish, as long as it tastes good? As it turns out, there are several reasons. About 33% of halibut are substituted with olive flounder, which can harbor the parasite Kudoa septempunctata, which is known to cause severe food poisoning. In addition, some of the other halibut substitutes are actually overfished flounder species, so substituting these for halibut is depleting already at-risk fisheries. Similar problems, in which an at-risk species substitutes for the mislabeled species, were common in tuna and yellowtail as well.

The researchers recommend that seafood mislabeling must be attacked at all stages of the seafood supply chain. All seafood should be labeled to species, place of origin, and the type of fishing practice used. Inspectors must be trained to identify seafood – perhaps using portable, hand-held DNA sequencers. Retailers should be told when they sell mislabeled species, so they can insist that their suppliers deliver the correct goods. Finally social media can be used to inform the public of consistent mislabeling, so consumers can pressure retailers to make sure that a red snapper is what it claims to be.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Willette, D. A., Simmonds, S. E., Cheng, S. H., Esteves, S., Kane, T. L., Nuetzel, H., Pilaud, N., Rachmawati, R. and Barber, P. H. (2017), Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants. Conservation Biology, 31: 1076–1085. doi:10.1111/cobi.12888. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.