What grows up must go down: plant species richness and soils below.

Almost 20 years ago, Dorota Porazinska was a postdoctoral researcher investigating whether plant diversity influenced the diversity of organisms that lived in the soil below these plants, including bacteria, protists, fungi and nematodes (collectively known as soil biota).  Surprisingly, she and her colleagues discovered no linkages between aboveground and belowground species diversity.  She suspected that two issues were responsible for this lack of linkage. First, the early study lumped related species into functional groups – for example nematodes that eat bacteria, or nematodes that eat fungi.  Lumping simplifies data collection but loses a lot of data because individual species are not distinguished.  Back in those days, identifying species with DNA analysis was time-consuming, expensive, and often impractical. The second issue was that even if aboveground-belowground diversity was linked, it might be difficult to detect.  Ecosystems are very complex, and many belowground species make a living off of legacies of carbon or other nutrients that are the remains of organisms that lived many generations ago.   These legacy organic nutrient pools allow for indirect (and thus more difficult to detect) linkages between aboveground and belowground species.

Porazinska and her colleagues reasoned that if there were aboveground/belowground relationships, they would be easiest to detect in the simplest ecosystems that lacked significant pools of legacy nutrients. They also used molecular techniques that were not readily available for earlier studies to identify distinct species based on DNA analysis. The researchers established 98 1-m radius circular plots at the Niwot Ridge Long Term Ecological Research Site in the Colorado, USA Rocky Mountains. At each plot, they identified and counted each vascular plant, and recorded the presence of moss and lichen.  They also censused soil biota by using a variety of DNA amplification and isolation techniques that allowed them to identify bacteria, archaea, protists, fungi and nematodes to species.

PorazinskaOpening9256 Photo

Field assistant Jarred Huxley surveys plants in a high species richness plot. Credit Dorota L. Porazinska.

As expected in this alpine environment, plant species richness was quite low, averaging only 8 species per plot (range = 0 – 27).  In contrast to what had been found in other ecosystems, high plant diversity was associated with high diversity of soil biota.

PorazinskaEcologyFig1

Relationship between plant richness (x-axis) and soil biota richness (y-axis) for (A) bacteria, (B) eukaryotes (excluding fungi and nematodes), (C) fungi, and (D) nematodes.  OTUs are operational taxonomic units, which represent organisms with very similar or identical DNA sequences on a marker gene.  For our purposes, they represent distinct species.

Looking at the graphs above, you can see that different groups responded to different degrees; nematodes had the strongest response to increases in plant richness while fungi had the weakest response.  When viewed at a finer level, some groups of soil organisms, including photosynthetic microorganisms such as cyanobacteria and green algae actually decreased, presumably in response to competition with aboveground plants for light and possibly nutrients.

Given the strong relationship between plant species richness and soil biota richness, Porazinska and her colleagues next explored whether high plant richness was associated with soil nutrient levels (nutrient pools).  In general, there was a strong correlation between plant species richness and nutrient pools (see graphs below).  But soil moisture, and the ability of soil to hold moisture were the two most important factors associated with nutrient pools.

PorazinskaEcologyFig2

Amount (micrograms per gram of soil) of carbon (left graph) and nitrogen (right graph) in relation to plant species richness.

Ecologists studying soil processes can measure the rates at which microorganisms are metabolizing nutrients such as carbon, phosphorus and nitrogen.  The expectation was that if high plant species richness was associated with higher soil biota richness, and larger soil nutrient pools, then the activity of enzymes that metabolize soil nutrients should proportionally increase with these factors.  The researchers found that enzyme activity was very low where plants were absent or rare, and greatest in complex plant communities.  But the most important factors influencing enzyme activity were the amount of organic carbon present within the soil, and the ability of the soil to hold water.

PorazinskaClosing4427

Patchy vegetation at the field site. Credit: Cliffton P. Bueno de Mesquita.

Porazinska and her colleagues hypothesize that the relationship between plant species richness, soil biota richness, nutrient pools, and soil processes such as enzyme activity, exist in most ecosystems, but are obscured by indirect linkages between these different levels.  They hypothesize that these relationships in other ecosystems such as grasslands and forests are difficult to observe.  In these more complex ecosystems, carbon inputs into the soil form large legacy carbon pools. These carbon pools, and the ability of the soil to hold nutrient pools, fundamentally influence the abundance and richness of soil biota. In contrast, in nutrient-poor soils, such as high Rocky Mountain alpine meadows, legacy carbon pools are rare and small. Consequently, plants and soil biota interact more directly, and correlations between plant species diversity and soil biota diversity are much easier to detect.

note: the paper that describes this research is from the journal Ecology. The reference is Porazinska, D. L., Farrer, E. C., Spasojevic, M. J., Bueno de Mesquita, C. P., Sartwell, S. A., Smith, J. G., White, C. T., King, A. J., Suding, K. N. and Schmidt, S. K. (2018), Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99: 1942-1952. doi:10.1002/ecy.2420. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

 

Homing in on the micro range

I’ve always been fascinated by geography. As a child, I memorized the heights of mountains, the populations of cities, and the areas encompassed by various states and countries. I can still recite from memory many of these numbers – at least based on the 1960 Rand McNally World Atlas. Part of my fondness for geography is no doubt based on my brain’s ability to recall numbers but very little else.

Most geographic ecologists are fond of numbers, exploring numerical questions such as how many organisms or species are there in a given area, or how large an area does a particular species occupy? They then look for factors that influence the distribution and abundance of species or groups of species. Given that biologists estimate there may be up to 100 million species, geographic ecologists have their work cut out for them.

As it turns out, most geographic ecologists have worked on plants, animals or fungi, while relatively few have worked on bacteria and archaeans (a very diverse group of microorganisms that is ancestral to eukaryotes).

bacteria1

Two petri plates with pigmented Actinobacteria. Credit: Mallory Choudoir.

Until recently, bacteria and archaeans were challenging subjects because they were so small and difficult to tell apart. But now, molecular/microbial biology techniques allow us to distinguish between closely related bacteria based on the sequence of bases (adenine, cytosine, guanine, and uracil) in their ribosomal RNA. Bacteria which are identical in more than 97% of their base sequence are described as being in the same phylotype, which is roughly analogous to being in the same species.

As a postdoctoral researcher working in Noah Fierer’s laboratory with several other researchers, Mallory Choudoir wanted to understand the geographic ecology of microorganisms. To do so, they and their collaborators collected dust samples from the trim above an exterior door at 1065 locations across the United States (USA).

bacteria2

Dr. Val McKenzie collects a dust sample from the top of a door sill. Credit: Dr. Noah Fierer.

The researchers sequenced the ribosomal RNA from each sample to determine the bacterial and archaeal diversity at each location. Overall they identified 74,134 gene sequence phyloypes in these samples – that took some work.

On average, each phylotype was found at 70 sites across the USA, but there was enormous variation. By mapping the phylotypes at each of the 1065 locations, the researchers were able to estimate the range size of each phylotyope. They discovered a highly skewed distribution of range sizes, with most phylotypes having relatively small ranges, while only a very few had large ranges (see the graph below). As it turns out, we observe this pattern when analyzing range sizes of plant and animal species as well.

Choudoir1C

Mean geographic range (Area of occupancy) for each phylotype in the study.  The y-axis (Density) indicates the probability that a given phylotype will occupy a range of a particular size (if you draw a straight line down from the peak to the x-axis, you will note that most phylotypes had an AOO of less than 3000 km2

Taxonomists use the term phylum (plural phyla) to indicate a broad grouping of similar organisms. Just to give you a feel for how broad a phylum is, humans and fish belong to the same phylum. Some microbial phyla had much larger geographic ranges than others. Interestingly, it was not always the case that the phylum with the greatest phylotype diversity had the largest range. For example, phylum Chrenarchaeota had the greatest median geographic range (see the graph below), but ranked only 19 (out of 50 phyla) in number of phylotypes (remember that a phylotype is kind of like a species in this study).

Choudoir3

Box plots showing range size distribution for individual phyla. Middle black line within each box is the median value; box edges are the 25th and 75th percentile values (1st and 3rd quartiles).  Points are outlier phylotypes. Notice that the y-axis is logarithmic.

With this background, Choudoir and her colleagues were prepared to investigate whether there were any characteristics that might influence how large a range would be occupied by a particular phylotype. We could imagine, for example, that a phylotype able to withstand different types of environments would have a greater geographic range than a phylotype that was limited to living in thermal pools. Similarly, a phylotype that dispersed very effectively might have a greater geographic range than a poor disperser.

The researchers expected that aerobic microorganisms (that use oxygen for their metabolism) would have larger geographic ranges than nonaerobic microorganisms, which are actually poisoned by oxygen. The data below support this prediction quite nicely.

Choudoir4a

Geographic range size in relation to oxygen tolerance.  In this graph, and the graphs below, the points have been jittered to the right and left of their bar for ease of viewing (otherwise even more of the points would be on top of each other).

Some bacterial species form spores that protect them against unfavorable environmental conditions. The researchers expected that spore-forming bacteria would have larger geographic ranges than non-spore-forming bacteria.

Choudoir4BC

Geographic range in relation to spore formation (left graph) and pigmentation (right graph).

Choudoir and her colleagues were surprised to discover exactly the opposite; the spore forming bacteria had, on average, slightly smaller geographic ranges. Choudoir and her colleagues also expected that phylotypes that are protected from harsh UV radiation by pigmentation would have larger geographic ranges than unpigmented phylotypes – this time the data confirmed their expectations.

The researchers identified several other factors associated with range size. For example, bacteria with more guanine and cytosine in their DNA or RNA tend to have larger geographic ranges. Some previous studies have shown that a higher proportion of guanine and cytosine is associated with greater thermal tolerance, which should translate to a greater geographic range. Choudoir and her colleagues also discovered that microorganisms with larger genomes (longer DNA or RNA sequences) also had larger ranges. They reason that larger genomes (thus more genes) should correspond to greater physiological versatility and the ability to survive variable environments.

This study opens up the door to further studies of microbial geographic ecology. Some patterns were expected, while others were surprising and beg for more research. Many of these microorganisms are important medically, ecologically or agriculturally, so there are very good reasons to figure out why they live where they do, and how they get from one place to another.

note: the paper that describes this research is from the journal Ecology. The reference is Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R. and Fierer, N. (2018), Variation in range size and dispersal capabilities of microbial taxa. Ecology, 99: 322–334. doi:10.1002/ecy.2094. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Treefall gaps deliver diversity

When John Terborgh began research at Cocha Cashu Biological Station in Peru back in 1974, he probably did not expect to still be working there 43 years later, doing research and publishing papers about the astounding species diversity in its tropical floodplain rainforest.

JT_TreefallLisa Davenport

John Terborgh leans against a fallen tree that has created a gap in the forest canopy. Credit: Lisa Davenport.

One contributor to species diversity in tropical forests is treefall gaps, which form when a mature tree falls down, opening up a gap in the overhead canopy. The most obvious change associated with treefall gaps is an increase in light that reaches the canopy floor. In comparison to the closed canopy, treefall gaps may be dryer, warmer, have increased plant transpiration rates, and may host many different species that colonize the new environment.

Treefallgap Irina Skinner

Small treefall gap in a dense rainforest. Credit: Irina Skinner

While it’s clear that gaps influence the physical environment of the forest floor, it is not clear how a changed physical environment translates to biological diversity of the treefall gap community. Comparing treefall gaps to closed canopy communities, Terborgh and his colleagues explored this relationship.

First the researchers asked whether the seed rain into tree gap communities is different from the seed rain into closed canopy communities. Seed rain describes the types and abundance of seeds that are dispersed into communities. Usually seeds are blown into communities by the wind, or enter attached to the bodies or excrement of animals. Alternatively, some seeds are autochorous – self-dispersing, in some cases aided by a change in fruit shape that causes seeds to be ejected explosively.

To do this analysis Terborgh and his colleagues needed a systematic way to measure seed rain. The researchers set up a regularly-spaced grid of small containers (seed traps) that collected a portion of the seeds that entered the community. They also needed a way to describe whether the canopy was closed, somewhat open, or very open as in a treefall gap. For each seed trap they calculated a canopy cover index (CCI), which measured the amount of vegetation found at different levels directly above the traps. A value of 0 indicated no vegetation (a completely open canopy), while a value of 6 indicated dense vegetation at all levels (a completely closed canopy).

As the graphs below indicate, there were some dramatic differences between gaps and canopies. Note that the x-axis has been log-transformed so CCI = 1 transforms to a log(CCI) = 0, and a CCI = 6 transforms to log(CCI) = 0.778. All four major groups of animal seed dispersers dispersed many more seeds into closed canopy forest than into treefall gaps. The relationship between seed abundance and canopy cover was strikingly linear for primates and small arboreal animals. This makes sense, as these animals tend to sit on trees, and spread seeds either through defecation of already eaten fruit, or by eating fruits and inadvertently spilling some seeds in the process. So very few trees in treefall gaps translates to many fewer seeds in treefall gaps, with most (76%) being blown in by the wind.

TerbprghFig2

The log abundance of potentially viable seeds (PV seeds on y-axes) collected in seed traps in relation to the log (canopy cover index) for six different types of seed dispersal agents/mechanisms.

Terborgh and his colleagues realized that differences in seed dispersal could profoundly influence the number and types of plants that were recruited into the population. Despite the scarcity of animals in tree fall gaps, most of the saplings (79%) that recruited into gaps were animal dispersed, whereas wind-dispersed species made up only 1% of the saplings.

Sapling species diversity was greater under a closed canopy.

TerborghFig5scanpub

Sapling species diversity (measured as log(Fisher’s alpha)) in relation to canopy cover (measured as log (canopy cover index)).

Though species diversity was lower in tree fall gaps in comparison to the closed canopy, species composition (the types of species found there) was very different in treefall gaps. There were many species that recruited only under gaps, and were never found under a closed canopy. Interestingly, there is good evidence that the small treefall gaps in this study recruited a different set of tree species than do larger treefall gaps, which tend to recruit species that do best under conditions of very bright sunlight. Thus the researchers conclude that treefall gaps, small and large, offer a wide range of environmental conditions not found in the closed canopy,  that ultimately help to promote astoundingly high tropical forest tree diversity.

note: the paper that describes this research is from the journal Ecology. The reference is Terborgh, J., Huanca Nuñez, N., Alvarez Loayza, P. and Cornejo Valverde, F. (2017), Gaps contribute tree diversity to a tropical floodplain forest. Ecology, 98: 2895–2903. doi:10.1002/ecy.1991. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

River restoration responses

The Lippe River in Germany has been subjected to many decades of channelization, deepening, floodplain drainage, straightening and consequent shortening, with one result being that the modern Lippe is 20% shorter than it was two centuries ago. Beginning in 1996, conservation managers began reversing this trend by widening the river, raising the level of the river bed, constructing small islands within the river and terminating floodplain drainage operations over a stretch of 3.3 km. As a result of these activities, a small portion of the river looks much like it did 200 years ago.

rivrestfig1

A section of the Lippe River before (left) and after (right) restoration.

Over a 21-year period, researchers from Arbeitsgemeinschaft Biologischer Umweltschutz have conducted systematic surveys of fish communities at the restored and unrestored sections of the river. Researchers sampled the fish community with electrofishing – inputting a direct electrical current into the river – which causes the fish to swim towards the boat where they are easily collected with nets, identified by species, and returned unharmed into the river. A data set over this length of time in association with a restoration project is very unusual; oftentimes (in part due to funding issues) only one survey is conducted to assess the fish community response to river restoration.

About eight years ago, while a postdoctoral researcher at Senckenberg Research Institute in Frankfurt, Germany, Stephan Stoll was asked to analyze some river restoration outcomes, and, as he describes, “became hooked to the topic.” To evaluate the response of the Lippe River fish community to restoration, a group of researchers headed by Stephanie Höckendorff, a Master’s student with Stoll, first asked a very simple question – how did fish abundance and species richness (the number of fish species) compare in the restored and unrestored regions of the river.

The graph below shows several striking trends. Abundance peaked about 2-3 years after restoration, declined sharply the next year, and recovered in subsequent years to about three times the abundance found in unrestored sections. Importantly, abundance varied extensively year-to-year. For example, if you had done only one survey in 2000, you would have erroneously concluded that restoration had no effect, which is why the researchers emphasize the importance of collecting data over a long stretch of time.

rivrest2a

Abundance of fish in restored (Rest-gray curve) and unrestored (Cont-black curve) sections of the Lippe River.  The gray vertical bar indicates the start of the restoration project in 1997.

Species richness increased sharply, but did not reach its peak until nine years after restoration. Again, there was extensive year-to-year variation in species richness.

rivrest2b

Fish species richness in restored (Rest-gray curve) and unrestored (Cont-black curve) sections of the Lippe River.  The gray vertical bar indicates the start of the restoration project in 1997.

Höckendorff and her colleagues were intrigued by this delay in species richness, and turned their attention to understanding what types of species benefited most from the restoration. Their analyses indicated that colonizing species, such as common minnows and three-spined sticklebacks, tended to have short life spans, early female maturity, several spawning events per year and a fusiform body shape – a body that is roughly cylindrical and tapers at both ends. Interestingly, some of the most successful colonizers took quite a long time to get well-established within the community.

Minnow

Common minnows, Phoxinus phoxinus. Credit: Carlo Morelli (Etrusko25)

Stickleback

The three-spined stickleback, Gasterosteus aculeatus. Credit: Ron Offermans

The restored habitat was highly dynamic, experiencing periodic flooding and the formation of temporary shallow bays and shifting sandbanks. These types of habitats tend to select for minnows, sticklebacks and other opportunistic species that are attracted to periodic disturbances. These opportunistic species were quick to move in, and continued to increase in abundance over time. Importantly, several rare and endangered species also colonized the restored habitat. However, large, deep-bodied, slow maturing and long-lived species did not benefit (at least over the 17 years of the survey), as these types of species are generally favored in less dynamic habitats, which are more stable and uniform.

Overall, these findings demonstrate the benefits of river restoration to the fish communities they harbor. But some species are more likely to benefit than others, and the time-scale over which recolonization occurs is highly variable. Surveys must be repeated over a long time-scale to tell conservation managers whether their restoration efforts are successful, and how they might change their future river restoration efforts.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Höckendorff, S., Tonkin, J. D., Haase, P., Bunzel-Drüke, M., Zimball, O., Scharf, M. and Stoll, S. (2017), Characterizing fish responses to a river restoration over 21 years based on species’ traits. Conservation Biology, 31: 1098–1108. doi:10.1111/cobi.12908. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Biodiversity: it’s who you are

It is a massive understatement that ecologists and conservation biologists are profoundly interested in how disturbance affects biological diversity. Humans are disturbing ecosystems by degrading or destroying habitat, by fragmenting habitat into pieces that are too small to sustain populations, by directly overexploiting species for consumption or other purposes, and by introducing non-native species (and there’s more!). Some biologists argue that disturbance has gotten so severe that we need to modify our worldview of ecosystems. They argue, for example, that intact grasslands are so rare that we should stop talking about them as an ecosystem (or biome), but rather should more realistically explore the ecology of different types of croplands, which are, in actuality, primarily disturbed grasslands.

Some types of ecosystems, such as rainforests, have survived human impact more than others, but all have been highly disturbed. So it is fitting that conservation ecologists devote their attentions to understanding how disturbance influences biological diversity. Working in Cameroon in 1998, John Lawton and his colleagues assessed species richness (number of different species) in relation to level of disturbance experienced by eight different animal groups: canopy beetles, flying beetles, butterflies, canopy ants, leaf-litter ants, nematodes, termites, and birds. They discovered that more intense disturbances were associated with a significant reduction in species richness for many of the groups.

Fluss_Dja_Somalomo

Tropical forest in Cameroon. Credit: Earwig via Wikimedia Commons

Nigel Stork worked with Lawton on the original study, and recently reanalyzed the data in the context of changes that have occurred in how conservation biologists view biological diversity. For example, many biologists now argue that conserving biological diversity requires understanding which species are affected by disturbance, rather than the number of species. In addition, not all disturbances have similar impacts on biological diversity. For example, logging with heavy equipment removes trees and compacts soil, while logging with lighter equipment does not compact soil, so the two treatments may have very different impacts. Finally, it may be more informative to group species according to ecosystem function rather than by taxonomic group.

StorkFig1

Locations of sampling plots within the Mbalmayo Forest Reserve, Cameroon.  The three blown-up sites had multiple plots with different levels of disturbance, as indicated by the key.

Stork and his colleagues only had data for six of the original eight taxonomic groups. They categorized intensity of disturbance based on how much tree biomass was removed, level of soil compaction, time since disturbance, and tree cover and diversity at time of sampling. This allowed the researchers to assign a disturbance index to each plot, with 0 indicating least disturbed and 1.0 indicating most disturbed. This analysis showed no significant relationship between disturbance and species richness in five of the six taxonomic groups, with only termites declining in richness in response to disturbance.

StorkFig3

Species richness in relation to intensity of disturbance for six taxonomic groups considered in the study.

Stork and his colleagues used a slightly different approach to assess the response of species composition (the identity of species that are actually present in the community) to disturbance. They compared each pair of surveyed plots in relation to how different they were in disturbance. Plots with very different levels of disturbance had disturbance dissimilarities close to 1.0, while plots with similar levels of disturbance had disturbance dissimilarities near 0. They then looked at community dissimilarity to explore changes in species composition. Plots with a community dissimilarity near 1.0 had very different species, while plots with a community dissimilarity near 0 had very similar species.

Here’s what they found. For five of six groups, disturbance dissimilarity was associated with significant (solid line) or borderline significant (dashed line) increases in community dissimilarity. So even though the number of species was not affected very much by disturbance (excepting termites), species composition was affected in all groups, with the exception of canopy ants. They conclude that a disturbed forest has very different types of species in it, but not necessarily fewer species.

StorkFig2

Community dissimilarity in relation to disturbance dissimilarity. For five taxonomic groups, plots that had the greatest differences in disturbance also had the greatest differences in species composition.

Lastly, this study shows that response to disturbance is related to the functional group – the role that each species plays within the community. For example, beetles showed a strong response to disturbance, but in reality the strong response was only true for the herbivorous beetle functional group. Beetles that ate fungi or were predators or scavengers showed relatively little change in species composition in relation to disturbance.

So what should conservation ecologists do with this information? Given the diversity and intensity of disturbance globally, we need to develop a better understanding of how species and communities respond to global change. Species composition may be a more sensitive indicator of disturbance than is species richness. Functional groups may be more helpful than taxonomic groups in identifying how disturbance influences how ecosystems actually work. Perhaps monitoring particular functional groups can give us insight into how unrelated groups with similar ecology might respond to a world that promises to experience increasing levels of disturbance.

note: I discuss two papers in this blog.  The original is from the journal Nature. The reference is Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, P. M., Hodda, M., Holt, R.D., Larsen, T.B., Mawdsley, N.A., Stork, N.E., Srivastava, D.S., and Watt, A.D. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391: 72-76. The second paper that reanalyzes the original data is from the journal Conservation Biology. The reference is Stork, N.E., Srivastava, D.S., Eggleton, P., Hodda, M., Lawson, G., Leakey, R.R.B. and Watt, A.D., 2017. Consistency of effects of tropical‐forest disturbance on species composition and richness relative to use of indicator taxa. Conservation Biology 31 (4): 924-933. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Fires foster biological diversity on the African savanna

As an ecology student back in days of yore, I was introduced to the classic mutualism between ants and swollen-thorn acacia trees. In this mutually beneficial relationship, ants protect acacia trees by biting and projecting very smelly substances at hungry herbivores, and by pruning encroaching branches of plant competitors. In return for these services, acacia trees provide the ants with homes in the form of swollen thorns, and in some cases also provide food for their defenders.

Ryan1

Swollen thorns of Acacia drepanlobium occupied by C. nigriceps. Credit: Ryan L. Sensenig.

I always assumed there were limits to what these ants could do. I knew that elephants were a constant problem for trees trying to get established on the African savanna. I figured, wrongly, that ants could not do much to counter a determined thick-skinned elephant. But as Ryan Sensenig describes, ants will swarm any intruding elephant, rushing into the elephant’s very sensitive trunk and mouth, biting it and, in some cases, exuding a chemical compound that is very offensive to an elephant’s keen sense of smell. So don’t mess with these ants if you can help it!

Ryan4

The Laikipia Plateau has one of the few growing elephant populations in East Africa. Credit: Ryan L. Sensenig.

Fires play an important role in savanna ecosystems, killing many trees before they can get established, and creating a mosaic of burned and unburned areas which vary in grass quality and quantity, and in the abundance of acacia trees (and other species as well). Recently burned grasslands tend to be lower in grass abundance and higher in grass nutrient levels. In a previous study of controlled burns, Sensenig and his colleagues showed that larger animals, such as elephants, tended to graze in unburned areas, which had more grass – albeit of lower quality. Returning seven years after the burn, he was surprised to find that elephants, which eat both trees and grass, had shifted to the burned sites in preference to unburned sites. He thus wondered whether fire was having an impact on the ant-acacia mutualisms that defend acacias from elephants and other large herbivores.

Ryan2

Sunset strikes an Acacia xanthophloea on Mpala Research Centre in Laikipia, Kenya. Credit: Ryan L. Sensenig.

Ants do not share trees. In Mpala Research Centre in the Laikipia Plateau of Kenya, there are four mutually-exclusive species of ants that live in Acacia drepanolobium trees: Crematogaster sjostedti, C. mimosae, C. nigriceps, and Tetraponera penzigi.

Sensenig and his colleagues wanted to know whether the controlled burns had a long-lasting effect on ant species distribution on acacia trees. The researchers surveyed 12 plots that had been burned seven years previously and an equal number of unburned plots to see how burns affected which ant species were present.

ryan3.png

Goshen College research students estimate ant densities on Acacia drepanolobium trees in the Kenya Longterm Exclosure Experiment. Credit: Ryan L. Sensenig.

They found that C. nigriceps was more common in acacias from burned areas while the other three species were more common in trees from unburned areas.

SensenigFig2

Why were there more C. nigriceps ants in previously burned areas? One explanation is that perhaps C. nigriceps is better at avoiding getting burned by fire, or else is better at recolonizing after a fire. To look for species difference in response to fire, the researchers simulated fires by burning elephant dung and dried grass in 3-gallon metal buckets, creating a small sustained smoke source. They stationed observers every 50 meters along a 500 meter transect for the first experiment, and a 1.8 km transect for the second experiment. They then measured ant-evacuation rate by counting the number of ants moving down the trunk. There were some very pronounced differences, with C. nigriceps having the highest evacuation rate, C. mimosae also showing a strong smoke response, and the other two species showing little evidence of any response.

SensenigFig4

Evacuation rate for each species in response to smoke.

C. mimosae generally prevails when it battles a colony of C. nigriceps. These results indicate that the subordinate C. nigriceps is able to maintain its presence in the community, in part, by taking advantage of its superior performance when it encounters a fire. The researchers also found some evidence that C. nigriceps is better at recolonizing after a fire than is C. mimosae. So despite being the subordinate species, C. nigriceps is abundant in this ecosystem.

Returning to those elephants, the researchers describe one final experiment in which some plots had a series of fences that excluded herbivores, while other plots were open to herbivores, including elephants.

SensenigFig6

In this experiment, as well, there were burned and unburned plots. In general, there were more ants present when herbivores were present, as the trees invested more in swollen thorns and in ant food (in the form of nectar) to attract protective ants. In addition, ants were more abundant in unburned plots than in plots that had been previously burned, with the exception of C. nigriceps when herbivores were excluded.

Ecologists have long known that fire maintains savanna ecosystems by preventing the grasslands from being overgrown by trees. This study shows that fires shift ant community structure in favor of the subordinate ant species (C. nigriceps), resulting in a higher diversity of ant species overall. The researchers suggest that if fires become more common in savannas, elephants may become more attracted to acacias that harbor a reduced (or nonexistent) cast of defenders, which could lead to a further reduction in the abundance of acacia trees and their mutualistic ants.

note: the paper that describes this research is from the journal Ecology. The reference is Sensenig, R. L., Kimuyu, D. K., Ruiz Guajardo, J. C., Veblen, K. E., Riginos, C., & Young, T. P. (2017). Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species. Ecology, 98(5), 1455-1464.Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.