Languishing Leatherbacks

Leatherback turtles, Dermochelys coriacea, are the largest of all sea turtles, tipping the scales at up to 900 kg. Unlike other sea turtles, the leatherback lacks a carapace covered with scutes; instead its carapace is covered by thick leathery skin that is embedded with small bones forming seven ridges running along its back. This turtle has a wonderful set of anatomical and physiological adaptations, such as huge flippers and an efficient circulatory system, that make it a powerful swimmer and deep ocean diver. Males spend their entire lives at sea, while females usually return to their birthplace along sandy beaches to dig nests and lay eggs.


Leatherback female on the beach at Las Baulas National Park. Credit: Karla Hernández.

Unfortunately, from the perspective of conserving awesome animals in our world, some populations of leatherbacks are declining rapidly, and many are now listed as critically endangered by the IUCN Red List. Pilar Santidrian Tomillo wanted to know why leatherback populations in the Eastern Pacific Ocean have declined so much in recent years. Working at Las Baulas National Park in northwestern Costa Rica since 1993, Tomillo and her colleagues have tagged 1927 nesting females so they could measure survival and return rates to the nesting shoreline. They discovered an alarming trend of sharp decline as described by the graph below.

TomilloFig1Tomillo and her colleagues knew that many leatherbacks were killed every year as a consequence of bycatch – capture by fishing nets or lines cast by fishermen who are targeting other species. But leatherback bycatch is very difficult to monitor accurately, as few fishermen keep accurate records of dead turtles, and turtles may die after being entangled and subsequently freed. The researchers also suspected that climate variability could influence leatherback population size. El Niño Southern Oscillation (ENSO) is a large-scale atmospheric system that affects global climate. In leatherback foraging areas, El Niño years are associated with high atmospheric pressure and warm sea temperatures, while La Niña years are associated with low atmospheric pressure and cool sea temperatures. Importantly, cool sea temperatures stimulate upwelling of nutrient-rich water to the surface, increasing production of phytoplankton, thereby increasing the abundance of  jellyfish and other favored leatherback food items. So the researchers hypothesized that the leatherbacks might do better in La Niña years than in El Niño years.

But what do they mean by doing better? There are two important factors influencing population growth: survival and reproduction. Either one could be affected by climate. By recapturing marked individuals, Tomillo and her colleagues were able to measure both survival and one important aspect of reproduction, which is how often females return to lay eggs. Reproduction is a very energetically demanding process for leatherback females, as they must migrate long distances (often thousands of kilometers) from their feeding grounds, and their eggs are large and plentiful, so females require a huge investment in resources to reproduce. Consequently, at Tomillo’s field site, only 4.5% of females reproduced in consecutive years, while the average interval between reproductive events was 3.65 years.

Let’s consider leatherback survival. As you can see from the data below, annual survival probability is very variable from year to year, ranging from about 30% in 2012 to near 100% in several years. Disturbingly, the long-term trend is downward, and the overall mean adult survival rate of 0.78 is very low in comparison to viable populations of sea turtles. If survival rates do not increase, the future is very bleak for this population.

Tomillo Fig4

Annual survival probability of adult females tagged at Las Baulas National Park. Vertical bars indicate 95% confidence intervals.

How does climate variation influence survival and reproduction? The Multivariate ENSO Index (MEI) measures ENSO strength, with positive numbers (X-axis on graphs below) indicating El Niño years (with poor food availability), and negative numbers indicating La Niña years (with good food availability). The researchers found no climate effect on survival (top graph below), but a high reproductive rate associated with La Niña events (bottom graph below).


The question remains, why is survival so low? Climate does not appear to affect survival, so that brings us back to human impact. Tomillo and her colleagues recommend reducing bycatch levels and implementing beach conservation measures to eradicate egg poaching. They also warn us that increases in global temperatures reduce egg hatching success, and pose a severe stress to this and other critically endangered leatherback populations throughout the world.

note: the paper that describes this research is from the journal Ecology. The reference is Santidrian Tomillo, P., N. J. Robinson, A. SanzAguilar, J. R. Spotila, F. V. Paladino, and G. Tavecchia. 2017. High and variable mortality of leatherback turtles reveal possible anthropogenic impacts.  Ecology 98: 2170–2179. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Meta-analysis measures multiple mycorrhizal benefits to plants

Plants and fungi sometimes live together in peace and harmony. Arbuscular mycorrhizal associations are associations between plant roots and fungi, in which the fungal hyphae (usually branched tubular structures) grow between root cells, penetrating some cells with a network of branches or arbuscules.  Oftentimes these are mutualistic associations with both the plants and the fungi benefiting from living together. Though plants with arbuscular mycorrhizal fungi (AMF) tend to grow better than plants without AMF, it not always clear what causes them to do so.


Kura clover, Trifolium ambiguum, grown with AMF (left) and without AMF (right). Credit: Liz Koziol.

Ecologists have traditionally viewed arbuscular mycorrhizal associations as a straightforward nutrient-carbon exchange. Fungal hyphae, with their vast surface area, pick up nutrients (such as nitrogen and phosphorus compounds) from the soil, which they deliver to the root cells in exchange for plant-produced carbon molecules.

But recently researchers have identified numerous other potential ways that the fungi help the plants, including the following: (1) promoting water uptake and transport, (2) helping to spread allelochemicals – toxic chemicals that some plants release to rid themselves of nearby competitors, (3) inducing chemical defenses against herbivores, (4) enhancing disease resistance, and (5) promoting soil aggregation or clumping, which stabilizes the soil near the roots, reduces erosion and promotes stable water flow.

Ecology Fig1

Camille Delavaux and her colleagues wondered whether these other plant benefits might actually be more important than we originally thought. Delavaux was planning to write a review paper for a 1 credit independent study, but she found so many papers on this topic that she decided to collaborate with fellow students Lauren Smith-Ramesh and Sara Kuebbing on a full-scale meta-analysis.

A meta-analysis is a systematic analysis of data collected by many other researchers. Delavaux and her colleagues used the Web of Science database to find 4410 studies on how AMF supplied plants with nutrients and 1239 studies on how AMF provided other plant benefits. That’s a lot of studies! But for the meta-analysis, the authors only used a small fraction of these studies because they set certain restrictions. For example, to be used in the meta-analysis the authors required each study to show some measure of variation for the data (such as standard deviation or standard error). In addition, the authors required each study to compare plants grown under two conditions: with AMF and without AMF.  In many studies the researchers collected soil, which they sterilized in a hot oven, and then set up a test group, which they inoculated with AMF spores or a plug of soil or root fragments that contained AMF. In addition, these studies also had a control group of plants that received only sterilized soil with no AMF added.


A collection of eight different species of AMF spores. Credit: Liz Koziol.

Delavaux and her colleagues compared how plants performed with and without an AMF. Because each study was different, one might only have been looking at the effects of AMF on nitrogen uptake performance, while a second study might consider how AMF influenced soil aggregation. Effect size (Hedges d+) compares mean performance of the AMF plant to mean performance of non-AMF plants for a particular variable (such as nitrogen uptake or soil aggregation). A positive effect size means that the AMF plant did better. Of course we need to know how much better is biologically meaningful, so for each variable the researchers calculated the 95% confidence intervals of the mean effect size. If the 95% confidence intervals were positive, then Delavaux and her colleagues could be 95% confident that there was a biologically important effect of AMF on plants for that particular measure of performance.

As expected, the researchers found a positive effect of AMF on plant nitrogen uptake. The mean effect size was 0.674 with a 95% confidence interval of 0.451- 0.912. We can interpret this to mean that we are 95% confident that the true mean effect size on nitrogen uptake is between 0.451 and 0.912. But the greatest effect of AMF on plants was on soil aggregation (mean effect size = 1.645, 95% confidence interval = 1.032 – 2.248). AMF also had significant positive effects on phosphorus uptake, water flow and disease resistance.


Mean effect size (Hedges’ d+) of AMF on different factors considered in the meta-analysis.  The horizontal error bars are the 95% confidence intervals. n = number of observations.  If the error bars do not cross zero, inoculation with AMF had a significant positive effect relative to plants without AMF.

This meta-analysis shows that AMF help plants in many different ways. Researchers knew about the AMF impact on nitrogen and phosphorus uptake, but may be surprised to learn of equally strong effects on water flow, disease resistance and soil aggregation. Consequently, AMF may be very useful for forest management, agriculture, conservation and habitat restoration. As examples, conservation biologists and forest managers may need to consider adding AMF to soils that have suffered severe burns from fires, which may kill the existing soil fungi. Or agriculturalists intent on growing a particular crop may want to inoculate the soil with a specific group of AMF spores that enhance soil aggregation and water uptake, so their crop may thrive in a habitat that might otherwise not be suitable.

More than 3/4 of land plants form associations with AMF. Consequently, any attempts to restore habitats or to maintain high levels of species diversity in existing ecosystems require understanding what types of AMF inhabit the soils, and how these AMF influence ecosystem functioning.

note: the paper that describes this research is from the journal Ecology. The reference is Delavaux, C. S., Smith-Ramesh, L. M. and Kuebbing, S. E. (2017), Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98: 2111–2119. doi:10.1002/ecy.1892. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Frogs face fatal fungal foes

Pathogens are organisms that cause disease, and like all organisms, they obey evolutionary principles. Pathogens that survive and reproduce successfully in a particular environment will have more offspring than those that are less successful, thereby passing on those traits that promote successful reproduction to future generations. The problem is that many pathogens change their environment in a way that makes their environment less hospitable for their own survival or reproduction. For example, the fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis in its amphibian host, which may severely reduce the host population size to the point where few individuals survive. If the host population goes extinct, then there are no hosts for the fungal offspring to infect.

Scheele fungal spore

Scanning electron micrograph of Batrachochytrium denbdrobatidis spore. Credit: Dr. Alex Hyatt, CSIRO Livestock Industries’ Australian Animal Health Laboratory.

Fortunately for Bd, but unfortunately for amphibians, there are several ways out of this conundrum. One approach is a reduction in pathogenicity so that a pathogen’s host species is able to tolerate the infection (and of course, natural selection will at the same time favor an increase in the host species’ tolerance for the pathogen). A second approach is to broadcast a wide net by infecting many different species. That way if one host species goes extinct, there are always many other species to infect. Bd infects over 500 species of amphibians, and has been implicated in the extinction of over 100 amphibian species, and the severe decline of an additional 100 species.

Ben Scheele and his colleagues wanted to know why the endangered northern corroboree frog, Pseudophryne pengilleyi, was declining in southeastern Australia. Several previous studies showed that many corroboree frog populations declined or went extinct in that region over the past 20 years, while the abundant common eastern froglet, Crinia signifera, showed no signs of decline over the same time period. Pilot studies showed that eastern froglets were heavily and commonly infected with Bd. The researchers reasoned that eastern froglets could be acting as a reservoir for Bd, so that corroboree frog populations are being decimated by association with Bd-infected eastern froglets.

Female Ppen copy Hunter

Female Pseudophryne pengilleyi. Credit: David Hunter.

Preliminary surveys indicated that the decline of corroboree frogs was not uniform across the study site; in fact there were some newly discovered populations that were doing very well. The researchers defined three types of sites in their research area. Absent sites (40 in total) had corroboree frogs in 1998, but the population went extinct by 2012. Declined sites (17 in total) had a greater than 80% decrease in abundance since 2000. New sites (25 in total) were newly discovered since 2012, and had much higher population densities than declined sites.


Study area in southeastern Australia, showing locations of Absent, Declined and New sites.

Unfortunately, it is impossible to visually distinguish an infected frog from an uninfected frog, at least until the few hours before death. But the researchers needed to be able to tell if a frog had chytridiomycosis. So they collected skin swabs from the frogs during the breeding season – only working at night to ensure cool humid conditions which minimized frog stress. They then did real time PCR on these samples to quantify the intensity of Bd infection.

Scheele and his colleagues had three important questions they were now prepared to answer. First, how prevalent is Bd in these two species? They found that infection rate was much higher in eastern froglets (79.4%) than in corroboree frogs (27.3%). The intensity of infection (measured by the number of fungal spores) was also much greater in eastern froglets than in corroboree frogs.

Second, do eastern froglets act as a reservoir for Bd, leading to infection and decline of corroboree frog populations? As we discussed earlier, the two species coexist at some sites, but not at others. If eastern froglets act as a reservoir for Bd, we would expect corroboree frogs to have higher infection rates at sites they share with eastern froglets, than they do at sites without eastern froglets. In support of this prediction, Bd prevalence in corroboree frogs was 41.4% at sites with eastern froglets, but only 2.6% at sites with no eastern froglets.

crinia and pengilleyi 3

C. signifera (left) and P. pengilleyi spending quality time together in a P. pengilleyi nest. Credit: David Hunter.

Finally, the researchers want to identify conditions that will promote corroboree frog recovery. They approached this quantitatively by modeling the probability of a site being classified as Absent, Declined or New, in relation to eastern froglet abundance. Based on their survey data of 81 sites, those sites with the highest eastern froglet abundance are most likely to be classified as Absent (corroboree frog extinction), while sites with very few eastern froglets are most likely to be classified as New (thriving corroboree frog populations).


Probability of a site being classified as Absent, Declined or New, based on eastern froglet abundance. Data are log transformed. Dashed lines are 95% confidence intervals.

Scheele and his colleagues conclude that eastern froglets are a reservoir host for Bd, and have played a major role in the decline in corroboree frog populations. The researchers point out that, in general, areas lacking reservoir hosts may provide endangered species with refugia from infectious disease. For managing endangered species, conservation biologists should carefully monitor sites for the presence of reservoir hosts so they don’t reintroduce rare and endangered animals into locations where they will be attacked and killed by pathogens.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Scheele, Ben C., David A. Hunter, Laura A. Brannelly, Lee F. Skerratt, and Don A. Driscoll. “Reservoir‐host amplification of disease impact in an endangered amphibian.” Conservation Biology 31, no. 3 (2017): 592-600. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Light levels limit lake phytoplankton response to fertilization

One might naively think that because we humans are land-dwelling creatures, our impact on aquatic ecosystems might be relatively minor. Unfortunately, this assumption is incorrect, as human activities are changing aquatic environments in profound ways that influence how aquatic species survive and interact. Global warming is increasing lake and river temperatures, uncontrolled development is causing some streams to run dry and others to flood, and agricultural practices are adding nutrients to many lakes and streams. Because these human impacts occur simultaneously, it is difficult to evaluate how each factor contributes to the observed changes in species relations.

In northern Sweden, lakes vary naturally in the amount of dissolved organic carbon (DOC) they contain. DOC comes from runoff of decaying plant matter, so lakes surrounded by substantial vegetation, or that experience a great deal of water input (runoff) from the surrounding area, would have higher DOC than other lakes. DOC is potentially very important to lakes, because DOC tends to discolor a lake, which reduces light penetration and slows down photosynthesis. On the positive side, carbon may bond to other molecules such as phosphorus and nitrogen, which are important nutrients that may be in short supply in these relatively infertile lakes.   Anne Deininger and her colleagues focused their studies on two factors: DOC and nitrogen. Most lakes have too much nitrogen, a result of excessive use of nitrogen fertilizers that run off into lakes, so these relatively low-nitrogen lakes provided the researchers with a unique opportunity to see how these two factors, DOC and nitrogen, interacted in a natural ecosystem.

Screen Shot 2017-06-14 at 11.35.22 AM

Low DOC control lake. Credit: M. Klaus

The researchers selected six lakes that varied naturally in DOC levels: two low (~7 mg DOC/liter), two medium (~11 mg DOC/liter), and two high (~20 mg DOC/liter). In 2011 they measured everything possible about each lake: abundance of all of the life forms, DOC, temperature, light levels, nutrients and photosynthetic rates. In 2012 and 2013, they supplemented one of each pair of lakes with nitrogen compounds every one to two weeks. The added nitrogen was equivalent to the higher nitrogen inputs that are experienced by lakes in southern Sweden. And, as you might expect, the researchers continued measuring all factors of interest in both the experimental (fertilized) and control (unfertilized) lakes throughout the year – at least until the lakes froze over.


Anne Deininger (in orange) and Sonja Prideaux collect samples from a lake. Credit: M. Deininger.

Deininger and her colleagues were most interested in differences in the abundance of phytoplankton – small free-floating photosynthetic organisms, because these are the primary producers – the organisms that produce the chemical energy (via photosynthesis) that enters food webs. There are many different types or groups of these phytoplankton; some are flagellated, with hair-like processes that allow them to navigate in the water column. Some are exclusively autotrophs, producing their own energy from photosynthesis, some are primarily hetrotrophic, eating other organisms or the remains of dead organisms, while others are mixotrophs, using both strategies to produce energy. Cyanobacteria are photosynthetic bacteria, while picophytoplankton are phytoplankton of unusually small size.

Screen Shot 2017-06-14 at 11.36.12 AM

Flagellated phytoplankton (Cryptomonas). Illustration by Anne Deininger.

Many important findings are summarized in the graph below. “B” represents the year before fertilization (2011), while “A1” is 2012 (after fertilization – 1st year) and “A2” is 2013 (after fertilization – 2nd year). Remember only the N-lakes were fertilized; the control lakes were simply monitored all three years. One finding is that in 2011, the high DOC lakes had the lowest phytoplankton abundance.  A second is that the low and medium DOC lakes had both flagellated and non-flagellated phytoplankton, while the high DOC lakes were dominated by flagellated phytoplankton.

Moving to the years after fertilization (A1 and A2), you can see that nitrogen fertilization increased phytoplankton abundance, but more so for the low-DOC lake. However, fertilization had little impact on the types of phytoplankton found in each lake; rather it simply increased the abundance of already existing groups.


Mean biomass of major phytoplankton groups in relation to DOC.  Recall that B refers to 2011 (the year before fertilization), while A1 and A2 refer to the two years after fertilization (2012, 2013).

The data can be organized so we can get a better view of what is happening quantitatively. Fertilization increases phytoplankton biomass, but much more for lakes with low DOC levels. In addition DOC appears to decrease phytoplankton abundance.


Deininger and her colleagues conclude that in these northern lakes, phytoplankton production is nutrient-limited at low DOC levels, but becomes limited by light availability in more murky waters. So adding nitrogen increases phytoplankton abundance to a greater extent in low DOC lakes. High DOC lakes have more flagellated autotrophs, as these species can swim to the top of the water column where there is more light for photosynthesis. As needed, flagellated phytoplankton can move lower in the water column where nutrients are more abundant.

The researchers emphasize that the nitrogen experiments were only conducted for two years. They don’t know if, for example, the types of species would change if fertilization continued for more than two years. They also don’t know if after 2013, the communities reverted to their pre-fertilization state, or if biomasses remained higher when nitrogen fertilization stopped. These types of questions are important to pursue because we humans are making drastic changes to most of our aquatic systems in a very uncontrolled manner. We need to understand the effects of these changes to the aquatic environment, and also how we can reverse the effects should they prove to be highly detrimental.

note: the paper that describes this research is from the journal Ecology. The reference is Deininger, A., Faithfull, C. L., & Bergström, A. K. (2017). Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology98(4), 982-994. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Fires foster biological diversity on the African savanna

As an ecology student back in days of yore, I was introduced to the classic mutualism between ants and swollen-thorn acacia trees. In this mutually beneficial relationship, ants protect acacia trees by biting and projecting very smelly substances at hungry herbivores, and by pruning encroaching branches of plant competitors. In return for these services, acacia trees provide the ants with homes in the form of swollen thorns, and in some cases also provide food for their defenders.


Swollen thorns of Acacia drepanlobium occupied by C. nigriceps. Credit: Ryan L. Sensenig.

I always assumed there were limits to what these ants could do. I knew that elephants were a constant problem for trees trying to get established on the African savanna. I figured, wrongly, that ants could not do much to counter a determined thick-skinned elephant. But as Ryan Sensenig describes, ants will swarm any intruding elephant, rushing into the elephant’s very sensitive trunk and mouth, biting it and, in some cases, exuding a chemical compound that is very offensive to an elephant’s keen sense of smell. So don’t mess with these ants if you can help it!


The Laikipia Plateau has one of the few growing elephant populations in East Africa. Credit: Ryan L. Sensenig.

Fires play an important role in savanna ecosystems, killing many trees before they can get established, and creating a mosaic of burned and unburned areas which vary in grass quality and quantity, and in the abundance of acacia trees (and other species as well). Recently burned grasslands tend to be lower in grass abundance and higher in grass nutrient levels. In a previous study of controlled burns, Sensenig and his colleagues showed that larger animals, such as elephants, tended to graze in unburned areas, which had more grass – albeit of lower quality. Returning seven years after the burn, he was surprised to find that elephants, which eat both trees and grass, had shifted to the burned sites in preference to unburned sites. He thus wondered whether fire was having an impact on the ant-acacia mutualisms that defend acacias from elephants and other large herbivores.


Sunset strikes an Acacia xanthophloea on Mpala Research Centre in Laikipia, Kenya. Credit: Ryan L. Sensenig.

Ants do not share trees. In Mpala Research Centre in the Laikipia Plateau of Kenya, there are four mutually-exclusive species of ants that live in Acacia drepanolobium trees: Crematogaster sjostedti, C. mimosae, C. nigriceps, and Tetraponera penzigi.

Sensenig and his colleagues wanted to know whether the controlled burns had a long-lasting effect on ant species distribution on acacia trees. The researchers surveyed 12 plots that had been burned seven years previously and an equal number of unburned plots to see how burns affected which ant species were present.


Goshen College research students estimate ant densities on Acacia drepanolobium trees in the Kenya Longterm Exclosure Experiment. Credit: Ryan L. Sensenig.

They found that C. nigriceps was more common in acacias from burned areas while the other three species were more common in trees from unburned areas.


Why were there more C. nigriceps ants in previously burned areas? One explanation is that perhaps C. nigriceps is better at avoiding getting burned by fire, or else is better at recolonizing after a fire. To look for species difference in response to fire, the researchers simulated fires by burning elephant dung and dried grass in 3-gallon metal buckets, creating a small sustained smoke source. They stationed observers every 50 meters along a 500 meter transect for the first experiment, and a 1.8 km transect for the second experiment. They then measured ant-evacuation rate by counting the number of ants moving down the trunk. There were some very pronounced differences, with C. nigriceps having the highest evacuation rate, C. mimosae also showing a strong smoke response, and the other two species showing little evidence of any response.


Evacuation rate for each species in response to smoke.

C. mimosae generally prevails when it battles a colony of C. nigriceps. These results indicate that the subordinate C. nigriceps is able to maintain its presence in the community, in part, by taking advantage of its superior performance when it encounters a fire. The researchers also found some evidence that C. nigriceps is better at recolonizing after a fire than is C. mimosae. So despite being the subordinate species, C. nigriceps is abundant in this ecosystem.

Returning to those elephants, the researchers describe one final experiment in which some plots had a series of fences that excluded herbivores, while other plots were open to herbivores, including elephants.


In this experiment, as well, there were burned and unburned plots. In general, there were more ants present when herbivores were present, as the trees invested more in swollen thorns and in ant food (in the form of nectar) to attract protective ants. In addition, ants were more abundant in unburned plots than in plots that had been previously burned, with the exception of C. nigriceps when herbivores were excluded.

Ecologists have long known that fire maintains savanna ecosystems by preventing the grasslands from being overgrown by trees. This study shows that fires shift ant community structure in favor of the subordinate ant species (C. nigriceps), resulting in a higher diversity of ant species overall. The researchers suggest that if fires become more common in savannas, elephants may become more attracted to acacias that harbor a reduced (or nonexistent) cast of defenders, which could lead to a further reduction in the abundance of acacia trees and their mutualistic ants.

note: the paper that describes this research is from the journal Ecology. The reference is Sensenig, R. L., Kimuyu, D. K., Ruiz Guajardo, J. C., Veblen, K. E., Riginos, C., & Young, T. P. (2017). Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species. Ecology, 98(5), 1455-1464.Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Urban frogs shed no blood

Life is a series of tradeoffs. As one example, we humans have the opportunity (if we are fortunate enough to be given choices) to opt for an urban or rural existence. The urban life is quicker-paced, offers more cultural opportunities, and can be annoyingly noisy and polluted. The rural existence is more laid-back, has fewer cultural opportunities, and may provide a peaceful and relatively unpolluted environment. These different environments can profoundly affect how we feel, with some people being stressed-out by cities and others by farms. On a personal level, I was born in New York City and now live in a very small town in Virginia – I was one of the fortunate ones who was given a choice.


Panama City skyline. Credit: Mariordo (Mario Roberto Duran Ortiz)

Heat, light and noise pollution are common in and near cities, and can influence the distribution and behavior of individuals of many different species. But these factors don’t only operate individually; they can work interactively. In other words, someone might not be annoyed by flashing light nor by loud noise, but might find the combination of the two very disturbing. In addition, these factors might not only operate on individuals; they can also affect relationships, or interactions. For example, loud noises generated by natural gas wells have been shown to influence the abundance of seed predators and seed dispersers, ultimately reducing the number of newly-established pine trees.

Armed with this understanding of interactions and relationships, Taegan McMahon and her colleagues wondered how the combination of heat, light and noise pollution might affect urban túngara frogs (Engystomops pustulosus) in comparison to their more rural counterparts. McMahon had observed that urban frogs were not being swarmed by small Corethrella midges that bite them and suck their blood in more rural and forested areas. These midges carry parasites, and if her observation was correct, urban frogs might have lower exposure to some diseases than do their rural counterparts.


Corethrella midge biting a túngara frog. Credit: Taegan McMahon.

The researchers surveyed 49 túngara frog calling sites in urban (Panama City) and rural (near the small town of Gamboa) areas. At each site they counted the number of frogs, number of midges on or above the frogs, the number of frog egg masses (in foam nests), and measured the air temperature, and the light and sound intensity. As expected, urban calling sites were lighter, noisier and warmer. There were slightly more (statistically insignificant) frogs at the urban sites and considerably more egg masses at rural sites. But the dramatic finding was that there were no midges to be seen on or near any urban frogs. So it might have been hot, bright and noisy, but at least those urban frogs were unbitten!

Factor Urban Rural
Light intensity 0.16 ± 0.02 lx 0.11 ± 0.02 lx
Noise intensity 69.0 ± 0.80 dB 59.2 ± 1.00 dB
Temperature 27.6° ± 0.09°C 25.9° ± 0.04°C
Túngara frog abundance 6.09 ± 2.63 frogs/site 4.05 ± 1.11 frogs/site
Foam nest abundance 0.24 ± 0.23 nests/site 2.06 ± 0.74 nests/site
Frog-biting midge abundance 0.00 ± 0.00 midges/site 67.75 ± 43.27 midges/site

Values are means ± standard error.

Analysis of the field survey data showed that temperature did not influence midge abundance but that light and noise were both important. Interestingly, light and noise interacted with each other in an interesting way. At low sound levels (below 65 db) light was important, in that midge abundance decreased at higher light intensity (Figure A). But at high sound levels, it could be pitch black and you would still have no midges (Figure B).


Log(number of midges) in relation to light levels, in field surveys in which noise levels were (A) below 65 db or (B) above 65 db.

Did light and noise somehow influence a midge’s ability to locate a frog? The researchers set up an experiment to see whether midges were attracted to frog calls at low, medium and high light intensities, and low, medium and high sound intensities. The sounds were recordings of Panama City traffic noise. At the same time, the researchers also broadcast the mating calls of túngara frogs at their normal calling intensity (which is remarkably loud for a small animal). They then counted the number of midges attracted to these traps, which were positioned in a rural setting.


Two calling túngara frogs competing for a female’s attention. Credit: Taegan McMahon.

At low light intensities, many midges were attracted to the recorded frog calls, but city noise (low or high) greatly reduced this attraction. At medium light intensity, fewer midges were attracted to frog calls, and again city noise reduced this attraction. Finally, at high light, even fewer midges were attracted to frog calls, regardless of noise.


Number of midges attracted to recordings of túngara frog calls in relation to light and sound intensity.

McMahon and her colleagues conclude that city noise and light pollution work together to disrupt the frog-biting midges host-parasite interaction. However, the overall impact of urbanization on túngara frogs is unclear at this point. Frogs can lose up to 10% of their blood volume to midges in a night of active calling. Frog-biting midges can transmit blood parasites such as Trypanosoma tungarae to túngara frogs, so urban frogs may be liberated from this scourge. A midge-free existence may allow urban male túngara frogs to call louder and for longer periods of time, which would make them more attractive to females. However, loud and long calling has also been shown to attract the túngara frogs’s mortal enemy, the voracious frog-eating bat. The researchers call for more research on how urbanization can affect species interactions, and for greater consideration of how different forms of pollution can interact to influence ecosystem dynamics.

note: the paper that describes this research is from the journal Ecology. The reference is McMahon, T. A., Rohr, J. R., & Bernal, X. E. (2017). Light and noise pollution interact to disrupt interspecific interactions. Ecology, 98(5), 1290-1299. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Nitrogen nurses

Alfred Lord Tennyson puzzled over the conflict between love as a foundation of Christianity, and the apparent violence of the natural world.

Who trusted God was love indeed

And love Creation’s final law

Tho’ nature, red in tooth and claw

With ravine, shriek’d against his creed

The good poet would be relieved to learn that modern ecologists have uncovered a softer, gentler side of the natural world – facilitative interactions, in which one species (the facilitator) helps out a second species. In many, but not all, cases, the second species also helps out the first species. Ecologists describe these mutually-beneficial interactions as mutualisms. As an example, Mimosa luisana is a mutualist with Rhizobium bacteria, providing the bacteria with root nodules to live in and carbohydrates as an energy source, while receiving ammonia (NH3) that the bacteria fix (convert) from atmospheric N2. A second type of mutualism, a mycorrhizal association, is a very common facilitative interaction between plants and fungi, which grow alongside or within the plant roots. In many mycorrhizal associations, the plant provides carbohydrates to the fungi, which import and share nutrients and water.

Mimosa plant

Mimosa luisana. Credit: Leticia Soriano Flores, algunos derechos reservados (CC BY-NC)

Alicia Montesinos-Navarro and her colleagues, and researchers before them, noticed that in arid and semi-arid environments, plant-plant facilitation was most common between two plant species that were structurally and functionally very distinct, and that tended to be very distantly related to each other. In particular, M. luisana tends to associate with many different species of plants, including many cacti that look nothing like it, and are very distantly related. M. luisana is called a nurse plant, because other species tend to grow under its branches, which shade the soil and reduce water loss from evaporation. Recent work by Montesinos-Navarro and her colleagues showed another benefit of nursing – some plants receive nitrogen from these nurse plants via the network of mycorrhizal fungi.

Traditionally, ecologists have argued that associations between distantly-related plants occur because the plants have very different ecological niches, using different resources in different ways, so they are not competing with each other. Montesinos-Navarro and her colleagues argue that a second process might be important in this and other systems. Close relatives of M. luisana might tend to have high nitrogen levels and thus not benefit from nitrogen transfer from the nurse plant, while more distantly-related plants might tend to have lower nitrogen levels and thus benefit from any nitrogen arriving from M. luisana. They explored this hypothesis in the semi-arid Valley of Zapotitlan in the state of Puebla, Mexico.


Study site dominated by the columnar cactus Neobuxbaimia tetezo, Credit: Alicia Montesinos-Navarro.

Measuring nitrogen transfer from the nurse plant to the recipient is not the world’s easiest task. Fortunately there is a rare form or isotope of nitrogen, 15N, which can be distinguished from the more common 14N. The researchers soaked M. luisana leaves in urea that was made up of primarily 15N, and the leaves took up the urea. Consequently, any exported nitrogen would contain a disproportionately high concentration of 15N, resulting in high 15N levels in the recipient plant. They then measured 15N levels in 14 different species of plants that used M. luisana as their nurse. The researchers were able to test two hypotheses. First, they could see whether close relatives to M. luisana tended to have higher N-levels than more distantly related species. Second they could see whether distant relatives tended to receive more nitrogen from nurse plants than did close relatives.


Mimosa luisana branch taking up 15N-labeled urea. Credit: Alicia Montesinos-Navarro.

The graph below summarizes the results. The y-axis measures how much the 15N level in the facilitated species increased by the end of the experiment (15 days). The x-axis measures the evolutionary relationship between M. luisana and the facilitated species – more precisely how long ago the two species shared a common ancestor. Lastly, the size of the dot measures the initial difference in leaf N-levels between M. luisana and the facilitated plant.

Ecology Fig 2

Influence of evolutionary relationship between M. luisana and the facilitated species (x- axis) and nitrogen gradient – the initial difference in nitrogen levels between the two species (size of dots) on the amount of nitrogen imported by the facilitated species.

Several trends are evident. First, close relatives of M. luisana tended to have similar leaf nitrogen values to M. luisana (medium sized dots), while distant relatives tended to have much less nitrogen than M. luisana (largest dots). Second, the most distant relatives tended to have the greatest increase in their 15N levels, which indicates that they received the greatest nitrogen export from their nurses.

One question is how the nitrogen is transported. Montesinos-Navarro and her colleagues describe how they treated soil with a fungicide, presumably killing the mycorrhizae, which resulted in a substantial reduction in nitrogen transport. This suggests that the mycorrhizal network is important for nitrogen transport. But more pressing is what do the nurse plants get out of the relationship. The researchers suggest that the recipient plants may provide M. luisana with either water or phosphorus, both of which may be in short supply in arid environments.

This study indicates that we need to look beyond traditional niche theory, and may need to  dig deeper to understand the structure of plant communities, and how facilitative interactions can explain the coexistence of very distantly related plants.

note: the paper that describes this research is from the journal Ecology. The reference is MontesinosNavarro, A., Verdú, M., Querejeta, J. I., & ValienteBanuet, A. (2017). Nurse plants transfer more nitrogen to distantly related species. Ecology, 98(5), 1300-1310. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.