Recruiting rhinoceros

Despite their immense size and unfriendly disposition, we humans have done an excellent job decimating the black rhinoceros (Diceros bicornis) population from several hundred thousand individuals around 1900 to fewer than 3000 individuals by 1990. Three subspecies are extinct, one is on the brink, while even the most successful remaining subspecies, the south-central black rhinoceros, is extinct over much of its former range, or only found in nature reserves.  Humans prize its horns, which historically were used for making wine cups, ceremonial daggers, and a variety of medicines that purportedly revive comatose patients, detoxify infections, and aid male sexual stamina. Trade of rhinoceros horn has been illegal since 1977, but poaching abounds.


Rhinoceros horn products seized by the Hong Kong Government. Credit: U.S. Government Accountability Office from Washington, DC, United States [Public domain], via Wikimedia Commons

This population crisis has motivated conservation ecologists to evaluate the best approaches to conserving the black rhinoceros, and to restoring it to parts of its former range. Translocation, moving rhinoceroses from one location where they are relatively well-established, to another where they are extinct or at very low numbers, is a viable approach to restoring populations. However, translocation did not always work well, as some rhinoceroses died following translocation, or failed to reproduce even if they survived translocation. While a post-doctoral researcher at the Zoological Society in San Diego, California, Wayne Linklater recognized that there were large datasets collected by government and non-government agencies that might answer the question about what drives better rhinoceros survival and breeding.  Unfortunately some of these datasets were difficult to access or interpret, but Jay Gedir, Linklater and several other colleagues persevered and combed through the data to identify the factors associated with successful translocation.

Dales photos Oct04 006

Black rhino is airlifted to temporary captivity before being translocated to a release site. Credit: Andrew Stringer

Many translocation studies use a short-term measure of success, such as survival or fecundity (fertility) of the translocated individuals.  The researchers reasoned that the most important measure, when it is available, is the number of offspring produced by translocated females that survive to an age that they too can reproduce, which in the case of rhinoceros is four years. Based on existing long-term studies, Gedir, Linklater and their colleagues compiled the offspring recruitment rate (ORR), which combines the variables of survival, fecundity, and offspring survival to sexual maturity. They found that ORR was greatest when mature females were translocated into a population that had a female-biased sex ratio.


Offspring recruitment rate (per year) in relation to age at release and sex ratio bias of the recipient population. Female bias is greater than 60% female, male bias is greater than 60% male. Numbers above graph are sample size for each category. Error bars are 95% confidence intervals.

So why does sex-ratio matter?  The researchers are not certain, but females are subjected to considerable sexual harassment by very aggressive males, so a female-biased sex ratio may lead to less harassment and improved survival and reproductive success for translocated females.

Translocated juveniles took longer to produce their first calf after reaching sexual maturity than did adults after being released. Again this effect was stronger with a male-biased sex ratio.


Mean time (years) to produce their first calf after reaching sexual maturity for juveniles, or after release for adults.

Many females (47%) produced no surviving offspring. This pattern of recruitment failure was most common in juveniles, and least common in adults translocated into populations with a female-biased sex ratio.


Recruitment failure of translocated females in relation to age at release and sex ratio bias of the recipient population.

Several factors can cause recruitment failure: 23% of females died following translocation and 24% of surviving females never produced calves. However, calf survival to sexual maturity was a robust 89%, and this survival rate was independent of age at translocation or population sex ratio. Among surviving translocated females, juveniles were about twice as likely as young or old adults to fail to produce a calf, but were equally successful at raising the calves they were able to produce.

Linklater was surprised at how important sex ratios (and presumably social relationships) were, particularly given that black rhinoceroses spend much of their time alone or with one offspring.

Neto and Gwala size each other up

Neto (the ranger) and Gwala (the rhino) size each other up.  Credit: Wayne Linklater.

The study did not support a major role for many other factors that had previously been considered important in translocation success, such as habitat quality, population density, number of rhinoceroses released and reserve size. Based on their analysis, the researchers recommend that conservation biologists should translocate mature females into populations with female-biased sex ratios to reduce rates of recruitment failure.  If juveniles must be translocated, they too should be moved into populations that already have a female-biased sex ratio to reduce levels of sexual harassment by males after they mature.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Gedir, J. V., Law, P. R., du Preez, P., & Linklater, W. L. (2018). Effects of age and sex ratios on offspring recruitment rates in translocated black rhinoceros. Conservation Biology32(3), 628-637. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2018 by the Society for Conservation Biology. All rights reserved.

Eavesdropping on antshrikes

Growing up in the Spy vs. Spy era, and a bit later in the Watergate age, I developed a keen appreciation for clandestine operations, which I assumed at that time were unique to human culture.  As it turns out, eavesdropping is practiced by many different species for a variety of reasons. One important example occurs in bird flocks composed of several species of birds. Antshrikes (Thamnomanes ardesiacus) are sentinel species in multi-species flocks because they produce alarm calls when they spot a predacious raptor flying overhead, alerting other nearby birds of the threat. Ari Martinez and his colleagues wondered whether hanging out with antshrikes allowed these other bird species to expand their niches to forage in areas that might otherwise be too dangerous.

Alarm calling species Thamnomanes ardesiacus Photo cred E. Parra 600dpi (1)

An antshrike perched in the Amazonian rainforest. Credit: E. Parra.

This fear-based niche shift hypothesis makes two related predictions.  First, in the absence of antshrikes, the remainder of the flock should shift its range to areas with lower predation risk.  Second, without antshrikes some birds might leave the flock entirely, because without sentinel services they no longer benefit from hanging with other birds. To test these predictions, Martinez and his colleagues identified eight flocks of 5-8 species (including antshrikes) in a tropical lowland forest in southeastern Peru.  They established four removal flocks from which they removed all antshrikes after capturing them in mist nets. They left four control flocks, in which they captured all antshrikes, but then returned them to the flock (to control for the effects of handling).

Group banding and mist netting birds photo ced Micah Reigner

Research team mist-netting and measuring antshrikes.  Credit Micah Reigner

To determine where the flock was spending its time, researchers used a GPS device every 10 minutes to record the center of the flock. They also censused each flock for species composition from dawn to dusk for three days before removal and three days after removal. In control flocks, home range overlapped extensively (average of 69%) when comparing the first (pre-removal) and second (post-removal) three-day period. In removal flocks, there was only 8% overlap in home range, indicating that the remaining flock was shifting its range when antshrikes were gone.


Home ranges of a control flock (top) and a flock which had antshrikes removed (bottom). Red color indicates home range during the three day pre-removal period, while blue color indicates home range during the three day post-removal period.  Deeper colors indicate greater occupancy. 

But are the remaining species shifting their niches to safer locations when antshrikes are no longer available as sentinels? To answer this question the researchers measured the presence or absence of vegetation cover at different height intervals every 10 minutes at the center of the flock. Comparing the second (post-removal) to the first (pre-removal) period, the removal flocks (those without antshrikes) moved into understory vegetation (0-8 meters high) that was substantially denser than was the vegetation inhabited by the control flocks (those with antshrikes). Presumably, dense understory protects birds without sentinels from being spotted or captured by raptors flying overhead. These dense understory areas are usually associated with less tree cover at higher height intervals (above 16 meters), which allows more sunlight to reach the forest floor, resulting in lush vegetation growth.


Proportion change in vegetation cover occupied by flocks from pre-trial to post-trial period at different height intervals.  Positive numbers indicate an increase in vegetation density. Error bars are 95% confidence intervals. Data are based on the behavior of four control and four removal flocks.

Flocking occurrence is the proportion of time individuals of a particular species spend in flocks.  The fear-based niche shift hypothesis predicts that flocking occurrence should decrease when sentinel species are removed because the benefits of flocking are reduced for the remaining species. When the researchers compared post-removal to pre-removal time-periods, five species showed strong reductions in flocking occurrence for removal flocks in comparison to control flocks, two were unchanged, and one species showed an increase in flocking occurence.


Change in proportion flocking occurrence for eight different flocking species in control and removal flocks.  Error bars are 95% confidence intervals.  Chlorothraupis carmioli (CHCA), Epinecrophylla erythrura (EPER), Epinecrophylla leucophthalma (EPLE), Glyphorynchus sprirus (GLSP), Hylophilus ochraceiceps (HYOC), Myrmotherula longipennis (MYLO), Myrmotherula menetriesii (MYME), Xiphorhynchus elegans (XIEL).

The authors emphasize that though flocking occurrence decreased for most species, the flocks did remain intact, which indicates that there are probably other benefits from flocking besides the opportunity to eavesdrop. There might be safety in numbers – a decrease in individual mortality as group size increases, or the possibility that the remaining flock members do provide some information about imminent predator attacks.

Martinez and his colleagues conclude that sentinels help other bird species succeed in tropical rainforests, thriving in dangerous habitats where they might otherwise fear to tread.  These species may provide important ecosystem services, such as dispersing seeds and eating herbivorous insects that threaten plants that are the foundation of these tropical ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Martínez, A. E., Parra, E. , Muellerklein, O. and Vredenburg, V. T. (2018), Fear‐based niche shifts in neotropical birds. Ecology, 99: 1338-1346. doi:10.1002/ecy.2217. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.