Finding fish fluorescently

Very early in my teaching career at Carleton College in Minnesota, I was thrust into the position of teaching students about things that I knew very little about.  I quickly learned that things went well, so long as I confessed my ignorance – the very bright students at that college were always happy to help me with my education. My ignorance of things biological stemmed from my undergraduate training in psychology, which had only a smattering of biology and chemistry in the coursework.  So when we extracted chlorophyll from a plant, shone a bright high-energy (probably UV) light on it, and it glowed a beautiful red, my reaction was “wooo…, that’s cool.”  My colleague, who was much more broadly trained, explained that this process, biofluorescence, occurred because the chlorophyll’s electrons were excited by the high energy light, and that they emitted the red light when they returned to a lower-energy state.

Marteenfig1Solenostomus cyanopterus

Robust ghost pipefish, Solenostomus cyanopterus, is cryptic in ambient daylight (left), but biofluoresces red when lit at night by a high-intensity LED torch (right).


Many threatened or endangered marine species are cryptic, providing challenges to conservation biologists who must assess the abundance of these species.  Usually, marine biologists use underwater visual censuses to measure abundance and distribution of marine species, but small or cryptic species are often missed or undercounted.  Maarten de Brauwer reasoned that conservation biologists could use biofluorescence as a tool to find small or cryptic marine organisms.  He knew from a paper that recently came out in the literature, and from his own experience as a diver, that a number of cryptic species do fluoresce. But how large is that number?


A diver searches for biofluorescent species. Credit: J. A. Hobbs

DeBrauer, working with five other researchers, surveyed reef fish at four locations in Indonesia, as well as two locations outside Indonesia (Christmas Island and the Cocos Islands).  Indonesia was a conservation priority as it contains the world’s greatest abundance of marine fish species. Using high-energy LED torches, the researchers surveyed 31 sites at the six locations, assessing each fish they detected for whether it was cryptic or non-cryptic, and whether it fluoresced. Of 95 cryptic species, 83 fluoresced.  In contrast, only 12 of 135 non-cryptic species fluoresced.


Number of cryptic and non-cryptic species showing biofluorescence in the survey.

Why are cryptic species more likely to biofluoresce?  As it turns out, we don’t know the answer to this question.  De Brauwer suggests that some small species, like gobies and triplefins, may use flourescence, which is particularly well-defined around the head region, as a way of communicating without predator detection.  These species fluoresce in red, a very-short-range light, so predators won’t see them unless they are very close. Some species of scorpionfish that live in algae and seagrass also fluoresce red, which allows them to blend in well with the red fluorescence emitted by the algal and seagrass chlorophyll.

Having shown that cryptic species tend to bioflouresce, the next challenge was to see whether bioflourescence surveys worked better than standard underwater visual censuses. First, the researchers focused their efforts on two species of pygmy seahorses (Hippocanpus bargibanti and H. denise) that live on seafans, searching for two minutes, either with or without a flourescence torch.  They followed with a similar study on two species of reef fish, the largemouth triplefin (Ucla xenogrammus) and the highfin triplefin (Enneapterygius tutuilae); but this time surveying 20m x 2m transects, either with or without a fluorescence torch.


A diver searches a seafan for pygmy seahorses. Credit: J. A. Hobbs.

Unfortunately, the pygmy seahorses are tiny (as you might suspect from their name) and probably rare, so only 32 H. bargibanti and 7 H. denise were detected. These seahorses fluoresce red primarily in their tail region and green from their eyes.


Two cryptic pygmy seahorses “seen” under ambient light (left, circled in red) and in the underwater biofluorescence census (right).

The numbers of H. denise were too small to include in the analysis. But for the other three species, the bioflourescence surveys detected more individuals than did the underwater visual surveys.


Mean number of individual H. bargibanti (left), U. xenogrammus (center) and E. tutuilae (right) detected with underwater visual surveys (UVC) vs. underwater biofluorescence surveys (UBC).

The researchers discovered that bioflourescence is very common in these cryptic and rare species, which means this technique can be used to assess abundance in species most likely to be overlooked using standard underwater visual surveys. The International Union for the Conservation of Nature, which (among other tasks) is responsible for assessing the extinction risk of species worldwide, has only been able to do so for less than 44% of fish belonging to three large cryptic families of reef fish.  Of 2000 species in these three families, 21% are listed as data-deficient because they have been so difficult to survey.  This novel approach should help inform conservation biologists about species that are in dire straits, so they can focus conservation efforts in a productive and useful direction.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Brauwer, M., Hobbs, J. A., Ambo‐Rappe, R., Jompa, J., Harvey, E. S. and McIlwain, J. L. (2018), Biofluorescence as a survey tool for cryptic marine species. Conservation Biology, 32: 706-715. doi:10.1111/cobi.13033. You should also check out Dr. De Brauwer’s blog at Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2018 by the Society for Conservation Biology. All rights reserved.

Seaweed defense – location, location, location.

If you’re ever feeling sorry for yourself, you should know that things could have been much worse; you could have been the brown seaweed, Silvetia compressa. So many problems!  Ocean waves come crashing over you, threatening to pull you off your life-sustaining substrate.  Ocean tides recede, exposing you to harsh sun and dangerously dry conditions. Perhaps worst of all, the fearsome predator Tegula funebralis eats away at your body, and you are powerless to defend yourself from its savage ravages.


Tegula snails chomp away on Silvetia seaweed in northern California. Credit: Emily Jones.

As it turns out, Silvetia is not so powerless after all.  After being partially grazed by Tegula, the seaweed can induce defenses that reduce its palatability.  From prior work, Emily Jones noticed that seaweed from northern California shorelines was much more sensitive to grazing than was seaweed from southern California shorelines.  It took fewer grazing snails to elicit palatability reduction in northern Silvetia than it did in southern Silvetia. She decided to focus her PhD work with Jeremy Long on documenting these geographic differences, and figuring out why they exist.


Emily Matthews (near) and Grace Ha (far) survey snails and seaweed in a northern California site. Credit: Emily Jones.

Environmental conditions vary along the California coast.  Northern seaweed populations experience cooler temperatures (air ~5-20 °C; water ~10-12 °C) and more nutrients (nitrate levels up to 40 umol/L) than do southern populations (air 5-37 °C; water ~14-20 °C; nitrate levels < 2 umol/L). In addition, Jones and Long surveyed Tegula abundance at three northern California and three southern California sites, counting every snail in 20 quadrats placed in the low, mid and high intertidal zone at each of the six sites (360 0.25 X 0.25m quadrats in total) .  They discovered that seaweed was much more likely to encounter Tegula along northern coastlines.


Percent of plots with Tegula snails in northern sites (Stornetta, Moat Creek and Sea Ranch – blue bars) and southern sites (Coast, Calumet and Cabrillo – orange bars). High, Mid and Low refer to location within the intertidal zone (high is closest to shore and regularly exposed at low tide).

Given these differences in snail abundance, we can now understand why Silvetia is more sensitive in its northern range to Tegula grazing.  But how strong are these differences in sensitivity? Jones and Long developed a simple paired-choice feeding preference assay to test for differences in palatability. At each location (north and south), the researchers gave test snails a choice between feeding on seaweed that had been previously grazed by either 1, 4, 7, 10 or 13 Tegula snails, or to feed on seaweed with no grazing history.  The test snails grazed for five days, and the researchers measured the amount of seaweed consumed for each group. They discovered that even a little bit of previous grazing (the 1-snail treatment) made northern test snails prefer non-grazed northern Silvetia, while only high levels of previous grazing (the 10 and 13-snail treatments) had similar effects on southern snails tested on southern Silvetia.


Amount of previously-grazed and non-grazed Silvetia eaten by Tegula in paired choice tests. (Top) Northern Selvetia, (Bottom) Southern Silvetia. Error bars are 1SE. * indicates significant differences in consumption rate.

These findings raised the question of whether the cooler and more nutrient-rich environmental conditions at the northern site were somehow causing this difference in consumption of previously-grazed seaweed.  The researchers designed a series of common garden experiments at the Bodega Marine Laboratory, in which seaweed from both locations were tested in the same environment.  Silvetia was exposed to grazing by two snails, or by no snails for 14 days. When test snails were given the choice of non-grazed or previously-grazed northern Silvetia, they much preferred eating non-grazed Silvetia. In contrast, they showed no preference when given a similar choice between non-grazed or previously-grazed southern Silvetia. This indicates that seaweed from the north are responding more to grazing by reducing palatability than are seaweed from the southern locations.


Amount of previously-grazed and non-grazed northern and southern Silvetia eaten by Tegula in paired choice tests.

In theory, there could be a tradeoff between induced defenses, such as reduction in palatability in response to grazing, and constitutive defenses, which an organism expresses all of the time.  Examples of constitutive defenses are thorns or spines in plants, and cryptic coloration or body shape in many insects.  Jones and Long found no evidence for such a tradeoff; in contrast southern Silvetia actually had lower levels of constitutive defenses, as both northern and southern Tegula strongly preferred eating southern Silvetia in paired choice tests.


Amount of northern and southern Silvetia eaten by northern and southern Tegula in paired choice tests.

These geographic differences in seaweed sensitivity to grazing are probably due to long-term differences in environmental history.  Southern Silvetia seaweeds live in stressful conditions (high temperatures and low nutrients), and the physiological cost of mounting an induced defense against low and moderate levels of grazing may be too high to be worthwhile. We also don’t know what the overall grazing rates are in the north versus the south, and importantly, how variable the grazing rates are in each location.  Highly variable grazing rates would select for a strong set of induced responses, which could be turned on and off as needed, allowing seaweed, or any plant, to defend itself against new or more hungry herbivores moving into their environment.

note: the paper that describes this research is from the journal Ecology. The reference is Jones, Emily and Long, Jeremy D. 2018. Geographic variation in the sensitivity of an herbivore-induced seaweed defense. Ecology. doi: 10.1002/ecy.2407. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.