“Notes from Underground” – cicadas as living rain gauges

Given recent discussions between Donald Trump and Kim Jong-un about whose button is bigger, many of us with entomological leanings have revisited the question of what insects are most likely to dominate a post-nuclear world. Cicadas have a developmental life history that predisposes them to survival in the long term because some species in the eastern United States spend many subterranean years as juveniles (nymphs), feeding on the xylem sap within plants’ root systems. Magicicada nymphs live underground for 13 or 17 years, depending on the species, before digging out en masse, undergoing one final molt, and then going about the adult business of reproduction. This life history of spending many years underground followed by a mass emergence has not evolved to avoid nuclear holocausts while underground, but rather to synchronize emergence of billions of animals. Mass emergence causes predator satiation, an anti-predator adaptation in which predators are gastronomically overwhelmed by the number of prey items, so even if they eat only cicadas and nothing else, they still are able to consume only a small fraction of the cicada population.

magicicadaarthur-d-guilani.png

Mass Magicicada emergence picturing recently-emerged winged adults, and the smaller lighter-colored exuviae (exoskeletons) that are shed during emergence. Credit: Arthur D. Guilani.

Less well-known are the protoperiodical cicadas (subfamily Tettigadinae) of the western United States that are abundant in some years, and may be entirely absent in others. Jeffrey Cole has studied cicada courtship songs for many years, and during his 2003 field season noted that localities that had previously been devoid of cicadas now (in 2003) hosted huge numbers of six or seven different species. He returned to those sites every year and high diversity and abundance reappeared in 2008 and 2014. This flexible periodicity contrasted with their eastern Magicicada cousins, and he wanted to know what stimulated mass emergence.

okanagana-cruentifera-1.jpg

clidophleps-wrighti-teneral.jpg

Protoperiodical cicadas studied by Chatfield-Taylor and Cole.  Okanagana cruentifera (top) and Clidophleps wrighti (bottom). Credit Jeffrey A. Cole.

Cole and his graduate student, Will Chatfield-Taylor, considered two hypotheses that might explain protoperiodicity in southern California (where they focused their efforts). The first hypothesis is that cicada emergence is triggered by heavy rains generated by El Niño Southern Oscillation (ENSO), a large-scale atmospheric system characterized by high sea temperature and low barometric pressure over the eastern Pacific Ocean. ENSO has a variable periodicity of 4.9 years, which roughly corresponds to the timing Cole observed while doing fieldwork. The second hypothesis recognized that nymphs must accumulate a set amount of xylem sap from their host plants to complete development. Sap availability depends on precipitation, and this accumulation takes several years in arid habitats. So while ENSO may hasten the process, the key to emergence is a threshold amount of precipitation over a several year timespan.

Working together, the researchers were able to identify seven protoperiodical species by downloading museum specimen data (including where and when each individual was collected) from two databases (iDigBio and SCAN). They also used data from several large museum collections, which gave them evidence of protoperiodical cicada emergences back to 1909. Based on these data, Chatfield-Taylor and Cole constructed a map of where these protoperiodical cicadas emerge.

ColeFig1

Maps of five emergence localities discussed in this study.

The researchers tested the hypothesis that protoperiodical cicada emergences follow heavy rains triggered by ENSO by going through their dataset to see if there was a correlation between ENSO years and mass cicada emergences. Of 20 mass cicada emergences since 1918, only five coincided with ENSO events, which is approximately what would be expected with a random association between mass emergences and ENSO. Scratch hypothesis 1.

Let’s look at the second hypothesis. The researchers needed reliable precipitation data between years for which they had good evidence that there were mass emergences of their seven species. Using a statistical model, they discovered that 1181 mm was a threshold for mass emergences, and that three years was the minimum emergence interval regardless of precipitation. Only after 1181 mm of rain fell since the last mass emergence, summed over at least three years, would a new mass emergence be triggered.

ColeFig2

Cumulative precipitation over seven time periods preceding cicada emergence.

The nice feature of this model is that it makes predictions about the future. For example, the last emergence occurred in the Devil’s punchbowl vicinity in 2014. Since then that area has averaged 182.2 mm of precipitation per year. If those drought conditions continue, the next mass emergence will occur in 2021 at that locality, which is longer than its historical average. Only time will tell. Hopefully Mr. Trump and Mr. Jong-un will be able to keep their fingers off of their respective buttons until then.

note: the paper that describes this research is from the journal Ecology. The reference is Chatfield-Taylor, W. and Cole, J. A. (2017), Living rain gauges: cumulative precipitation explains the emergence schedules of California protoperiodical cicadas. Ecology, 98: 2521–2527. doi:10.1002/ecy.1980. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

 

Predators and livestock – “stayin’ alive.”

President Donald Trump was elected on a platform that included building a great wall whose purpose was to keep out unwanted intruders from the south, and that would be paid for (apparently magically) by these same intruders.  The idea of building a great wall has been around for a long time; the Great Wall of China was constructed over a time period of almost two thousand years to keep out unwanted intruders (this time from the north). Not surprisingly, the cost of that Great Wall was not borne by the unwanted intruders. More recently, in the 1880s, the government of Australia constructed a 5500 km fence designed to keep unwanted dingoes away from sheep that pasture in southeastern Australia. As Lily van Eeden describes, the Australian government spends about $10 million dollars per year to maintain the fence but there are almost no data to compare livestock losses on either side of the fence. Thus she and her colleagues decided to look at what was being done globally to evaluate the effectiveness of different methods of protecting livestock.

DingoFencePeter Woodard

The Dingo fence across southeastern Australia. Credit Peter Woodard.

The researchers grouped livestock protection approaches into five different categories: lethal control, livestock guardian animals such as dogs, llamas and alpacas, fencing, shepherding and deterrents. Lethal control includes using poison baits and systematic culling of populations of top predators. Deterrents include aversive conditioning of problem predators, chemical, auditory or visual repellents, and protection devices such as livestock protection collars.

Screen Shot 2018-01-23 at 10.28.16 AM

A guardian dog emerges from the midst of its flock in Bulgaria. Credit: Sider Sedefchev.

Van Eeden and her colleagues then did a meta-analysis to see which approach worked best. You can check out my blog from Aug. 2, 2017 (“Meta-analysis measures multiple mycorrhizal benefits to plants”) for a more detailed discussion of meta-analyses. Very briefly a meta-analysis is a systematic analysis of data collected by many other researchers. This is challenging because each study uses slightly different techniques and has different levels of rigor. For this meta-analysis, van Eeden and her colleagues used only two types of studies. One type is a before/after design, in which researchers kept data on livestock loss before the mitigation treatment as well as after. The second type is a control-impact design, in which there was a control group set aside, which did not receive the mitigation treatment. Each study also needed sample sizes (number of herds and/or number of years), means and standard deviations, and had to be run for at least two months to be used in the meta-analysis.

The researchers searched several databases (Web of Science, SCOPUS and European Commission LIFE project), Google Scholar, and also used more informal sources, to collect a total of more than 3300 records. However, after imposing the requirements for types of experimental design and data output, only 40 studies remained for the meta-analysis. Based on these data, all five mitigation approaches reduced predation on livestock. The effect size in the figure below compares livestock loss with the treatment to livestock loss without the treatment, so that a negative value indicates that the treatment is associated with reduced livestock loss. The researchers conclude that all five approaches are somewhat effective, but the large confidence intervals (the whiskers in the graph) make it difficult to unequivocally recommend one approach over another. The effectiveness of lethal control was particularly variable (hence the huge confidence interval), as three studies showed an increase in livestock loss associated with lethal control.

van EedenFig2

Mean effect size (Hedges’ d) and confidence intervals for five methods used to mitigate conflict between predators and livestock.  More negative effect size indicates a more effective treatment. Numbers in parentheses are number of studies used for calculating mean effect size.

Finding that non-lethal management is as effective (or possibly more effective) than lethal control tells us that we should probably be very careful about intentionally killing large carnivores, since, in addition to being cool animals that deserve a right to exist, they also perform some important ecosystem services. For example, in Australia, there are probably more dingoes northwest of the fence than there are south of the fence, so exclusion may  be working. However there is some evidence that there are also more kangaroos and rabbits south of the fence, which could be an unintended consequence of fewer predatory dingoes. Kangaroos and rabbits eat lots of grass, so keeping dingoes away could ultimately be harming the sheep populations. Dingoes may also kill or compete with invasive foxes and feral cats, which have both been shown to drive native species to extinction, so excluding dingoes may increase foxes and cats, threatening native species.  Van Eeden and her colleagues argue that different mitigation approaches work in different contexts, but that we desperately need evidence in the form of standardized evaluative studies to understand which approach is most suitable in a particular context.

van Eeden Fig.3

Context-specific approach to managing the co-exstence of predators and livestock.

In all contexts, cultural and economic factors interact in mitigating conflict between humans and carnivores. The dingo is officially labeled as a wild dog, which invaded Australia relatively recently (about 4000 years ago), so the public perception is that this species has a limited historical role. Other cultures may have a different view of their predators. For example, the Lion Guardian project in Kenya, which trains and supports community members to protect lions, has successfully built tolerance for lions by incorporating Maasai community cultural values and belief systems.

To use a phrase that President Trump recently forbade the Centers for Disease Control to use in their reports, our decisions about predator mitigation should be “evidence-based.” We need more controlled studies that address the success of different mitigation approaches in particular contexts. We also must understand the costs of removing predators from an ecosystem, as predator removal can initiate a cascade of unintended consequences.

note: the paper that describes this research is from the journal Conservation Biology. The reference is van Eeden, L. M., Crowther, M. S., Dickman, C. R., Macdonald, D. W., Ripple, W. J., Ritchie, E. G. and Newsome, T. M. (2018), Managing conflict between large carnivores and livestock. Conservation Biology, 32: 26–34. doi:10.1111/cobi.12959. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2018 by the Society for Conservation Biology. All rights reserved.

Prey populations: the only thing to fear is fear itself

In reference to the Great Depression, Franklin Delano Roosevelt is famously quoted as stating during his 1933 inaugural speech “the only thing we have to fear is fear itself.” Roosevelt was no biologist, but his words could equally apply to a different type of depression – the decline of animal populations that can be caused by fear.

FDR

Roosevelt’s inauguration in 1933. Credit: Architect of the Capitol.

Ecologists have long known that predators can depress prey populations by killing substantial numbers of their prey. But only in the past two decades or so have they realized that predators can, simply by their presence, cause prey populations to go into decline. There are many different ways this can happen, but, in general, a predation threat sensed by a prey organism can interfere with its feeding behavior, causing it to grow more slowly, or to starve to death. As one example, elk populations declined after wolves were introduced to Yellowstone National Park. There are many factors associated with this decline, but one factor is fear of predators causes elk to spend more time scanning and less time foraging. Also, elk tend to stay away from wolf hotspots, which are often places with good elk forage.

Liana Zanette recognized that ecologists had not considered whether predator presence can cause bird or mammal parents to reduce the amount of provisioning they provide to dependent offspring, thereby reducing offspring growth and survival, and slowing down population growth. For many years, she and her colleagues have studied the Song Sparrow, Melospiza melodia, on several small Gulf Islands in British Columbia, Canada. In an early study, she showed that playbacks of predator calls reduced parental provisioning by 26%, resulting in a 40% reduction in the estimated number of nestlings that fledged (left the nest). But, as she points out, Song Sparrow parents provision their offspring for many days after fledging; she wondered whether continued perception of a predation threat during this later time period further decreased offspring survival and ultimately population growth.

Song sparrow

The Song Sparrow, Melospiza melodia. Credit: Free Software Foundation.

Zanette’s student, Blair Dudeck, did much of the fieldwork for this study. The researchers captured nestlings six days after hatching , weighed and banded them, and fit them with tiny radio collars. They then recaptured and weighed the nestlings within a few hours of fledging (at about 12 days post-hatching) to assess nestling growth rates.

sparrowbaby

Banded sparrow nestling with radio antenna trailing from below its wing. Credit: Marek C. Allen.

Three days after the birds fledged, Dudeck radio-tracked them, and surrounded them with three speakers approximately 8 meters from where they perched. For one hour, each youngster listened to recordings of calls made by predators such as ravens or hawks, followed, after a brief rest period, by one hour of calls made by non-predators such as geese or woodpeckers (or vice-versa). During the playbacks, Dudeck observed the birds to record how often the parents visited and fed their offspring, and whether offspring behavior changed in association with predator calls. This included recording all of the offspring begging calls.

BlairRadio

Blair Dudeck simultaneously uses a tracking device to locate Song Sparrows and a recorder mounted to his head to record their begging calls. Credit: Marek C. Allen.

Fear had a major impact on parental behavior. Parents reduced food provisioning vists by 37% when predator calls were played in comparison to when non-predator calls were played. They also fed offspring fewer times per visit, which resulted in 44% fewer meals in association with predator calls.

DudeckFig1

Mean number of parental provisioning visits (in one hour) in relation to whether predator (red) or non-predator (blue) calls were played. Error bars are 1 SE.

Hearing predator calls had no effect on offspring behavior – they continued to beg for food at a high rate, and did not attempt to hide.

Some parents were much more scared than others – in fact, some parents were not scared at all. The researchers measured parental fearfulness by subtracting the number of provisioning visits by parents during predator calls from the number of visits during non-predator calls. A more positive number indicated a more fearful parent (a negative number represents a parent who fed more in the presence of predator calls). The researchers discovered that more fearful parents tended to have offspring that were in poorer condition at day 6 and at fledging.

DudeckFig2

Offspring weight on day 6 (open circles) and at fledging (solid circles) in relation to parental fearfulness.  Higher positive numbers on x-axis indicate increasingly fearful parents.

Importantly, more fearful parents tended to have offspring that died at an earlier age. Based on this finding, the researchers created a statistical model that compared survival of offspring that heard predator playbacks throughout late-development with survival of offspring that heard non-predator playbacks during the same time period. They estimated a 24% reduction in survival. Combined with their previous study on playbacks during early development, the researchers estimate that hearing predator playbacks throughout early and late development would reduce offspring survival by an amazing 53%.

This “fear itself” phenomenon can extend to other trophic levels in a food web. For example recent research by Zanette and a different group of researchers showed that playbacks of large carnivore vocalizations dramatically reduced foraging by raccoons on their major prey, red rock crabs. When these carnivore playbacks were continued for a month, red rock crab populations increased sharply. This increase in crab population size was followed by a decline of the crab’s major competitor – the staghorn sculpin, and the crab’s favorite food, a Littorina periwinkle. Thus “fear itself” can cascade through the food web, affecting multiple trophic levels in important ways that ecologists are now beginning to understand.

note: the paper that describes this research is from the journal Ecology. The reference is Dudeck, B. P., Clinchy, M., Allen, M. C. and Zanette, L. Y. (2018), Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology, 99: 127–135. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.