Warming Arctic forests diverge over nutrients

Humans continue their unique uncontrolled experiment to see how increased atmospheric carbon dioxide and the resulting warmer temperatures influence biomes worldwide.  One expected outcome of this global experiment is that trees in the extreme north will show improved growth resulting from a more benign physical environment.  As it turns out, some regions of the north do show this trend, while others don’t – this lack of consistent response is known as divergence.  For her graduate work, Sarah Ellison, working with Patrick Sullivan, Sean Cahoon and Rebecca Hewitt, wanted to document divergence in northern Alaska, and to figure out what might be causing it.


The Wind River, near Arctic Village in the Arctic National Wildlife Refuge, is the easternmost site in the study. Credit: Patrick Sullivan.

The researchers established four study sites in four watersheds across the Brooks Range in northern Alaska.  They knew from previous studies that white spruce (Picea glauca) in the western Brooks Range have shown increased growth in response to climate warming, whereas those in the central and eastern Brooks Range have not responded. Some researchers hypothesized  that warmer temperatures caused moisture limitation in the eastern Brooks Range, but previous plant physiological studies done by this research team show no evidence of water stress, even in the extreme eastern portion of the range.


The four study sites within the Brooks Range from west to east: Agashashok, Kugururok, Dietrich and Wind River.

So what’s causing divergence?

At each study site, the researchers set up climate stations which collected continuous data on air and soil temperature, wind speed and direction, solar radiation, snow depth and precipitation. (Check out the following (you may need to copy and paste into your browser) for an entertaining look at the challenges of doing this research: https://youtu.be/ty6vwio9LvU).

My beautiful picture

A weather station at the Wind River sight. Credit: Sarah Ellison.

They discovered that soil temperatures were consistently warmer in the western part of the range over the course of the season.





(deg. C)



Colder soils are often associated with low levels of available nutrients, because bacteria are less active at colder temperatures, and thus less capable of breaking down nutrients into a form that can be taken up by roots.  In 2014, Ellison and her colleagues measured soil nutrient levels at each site and found generally lower levels in the central (Dietrich) and eastern (Wind River) sites.


From top: ammonium, nitrate, phosphate and total free primary amine (TFPA – a proxy for amino acids) availability in the soils at the four sites during the 2014 growing season. Error bars are +/- 1 SE.

There were several other important physiological pieces to this puzzle.  Plants in the west grew more quickly than did plants in the east. Rapid growth was associated with greater photosynthetic rates in the western watersheds. The researchers measured needle nutrient concentration and found that it decreased from west to east. Each year, there was a strong correlation between needle nutrient concentration and branch extension (the measure of tree growth), but the correlation with phosphorus was generally stronger than the correlation with nitrogen.


Branch extension in relation to needle phosphorus concentration (left graph) and needle nitrogen concentration (right graph) for three years of the study.

Armed with these findings, Ellison and her colleagues decided to experimentally test whether nutrient availability was limiting growth, particularly in the eastern regions of the Brooks Range.  If so, this would support the hypothesis that cold temperatures and the resulting decrease in nutrient availability were primary factors causing divergence across this vast ecosystem. In June, 2015, the researchers fertilized five trees at each site with a mixture of nitrogen, phosphorus, and potassium fertilizer, and left five similar nearby trees as untreated controls. After one year, branch extension was greatly enhanced at the most eastern site, and only slightly (insignificantly) enhanced at the most western site.



Mean annual growth (branch extension) before and after fertilization experiment for fertilized trees (gray circles) and control trees (black circles). Bars are +/- 1 SE.  Fertilization occurred in 2015 (indicated by vertical dotted lines).

For many years, forest ecologists have believed that forests in young glacial soils are nitrogen limited.  This study, and a few other recent studies, thrust phosphorus into prominence as a factor that can limit forest productivity.  Over time, as the climate continues to warm, soils in the eastern Brooks Range will enjoy increased microbial activity, and may no longer suffer as much from nutrient limitation.


The Agashashok mesic treeline sits on a gentle slope above the Agashashok river. Credit Sarah Ellison.

One surprising finding was that mycorrhizal growth on fine roots was more extensive in central and eastern watersheds.  Abundant mycorrhizae were associated with reduced branch extension, suggesting that these mycorrhizae may be parasitic, rather than mutualistic. The researchers are in the process of expanding their study to an even greater spatial extent of 20 sites distributed across the Brooks Range, which will allow them to further explore how general their findings are across this vast biome.

note: the paper that describes this research is from the journal Ecology. The reference is Ellison, S. B. Z.,  Sullivan, P. F.,  Cahoon, S. M. P., and  Hewitt, R. E..  2019.  Poor nutrition as a potential cause of divergent tree growth near the Arctic treeline in northern Alaska. Ecology100( 12):e02878. 10.1002/ecy.2878. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2019 by the Ecological Society of America. All rights reserved.

Drought differentially diminishes ecosystem production

Sometimes, even the most carefully conceived experiment is thrown for a loop by Mother Nature.  Good scientists must embrace the unexpected.  Ellen Esch, David Lipson and Elsa Cleland set out to explore how plant communities responded to high, normal and low rainfall conditions.  The researchers set up rainfall manipulation plots that were covered with a clear plastic roof that would allow most light to pass through, but intercept all of the water.  They then reapplied the intercepted water, with each plot receiving either 50%, 100% or 150% of the fallen rain.  The plan was to simulate drought, normal and wet conditions. The natural world had other plans, however, as 2013-2016 were unusually dry years. Fortunately the researchers adjusted, by refocusing their question on how plant communities respond to severe drought  (50% of intercepted rainfall), moderate drought (100%) and normal rainfall (150%).


Herbaceous plant community being irrigated (notice the rainbow). Credit: Ellen Esch.

Esch and her colleagues set up their experiment at the San Diego State University Santa Margarita Ecological Reserve, which has a Mediterranean-type climate with mild, somewhat moist winters and hot dry summers.


Exotic grasses (here showing recently senesced Bromus madritensis) dominated the herbaceous sites. Credit: Ellen Esch

They wanted to know how climatic variability brought about by climate change would influence plant phenology (the timing of periodic ecological events), specifically green-up date (when plants begin turning green) and senescence date (when they turn brown and curtail photosynthesis). They expected that the native species, primarily sage-type shrubs, would be more drought-resistant than the exotic herbaceous vegetation, which was dominated by brome grass.  Climate change is predicted to increase climatic variability, which should increase the frequency and intensity of severe droughts (and also of unusually wet years).

An important measure of ecosystem functioning is its productivity – the amount of carbon taken up by an ecosystem, usually by photosynthesis.  More productive ecosystems have more energy available to feed consumers and decomposers.  More productive ecosystems also take up and store more carbon dioxide from the atmosphere, which can help reduce climate change. The researchers used a reflectance radiometer to calculate the Normalized Difference Vegetation Index (NDVI), which essentially calculates how green an area is, and is a good measure of productivity.  Esch and her colleagues hypothesized that drought would reduce overall ecosystem NDVI, but that native vegetation would be more buffered against the negative effects of drought than would the invasive exotic vegetation.


A student from a plant physiology class at San Diego State University measures NDVI. Credit: David Lipson

Each year from 2013 – 2016, the researchers set up 30 3X3 meter plots; 15 plots were dominated by exotic herbaceous species such as brome, and 15 plots had mostly native shrub species such as sage. Plots were treated the same, except for receiving either 50%, 100% or 150% of the fallen rain, which corresponded to severe drought, moderate drought and normal rainfall, respectively. Periodically, the researchers used a radiometer to measure NDVI for each plot.  They discovered that, as expected, drought reduced NDVI much more in the plots dominated by exotic herbaceous species (top graph below) than in the plots dominated by native shrubs (bottom graph).


NDVI on each measurement date for plots dominated by (top graph) exotic herbaceous species and (bottom graph) native shrub species. Red square = severe drought treatment, green circle = moderate drought, blue triangle = normal precipitation. Error bars = +/- 1 standard error.

What caused this difference in response to drought between exotic plant-dominated and native plant-dominated communities?  Mechanistically, the native shrubs have deeper roots than the exotic grasses, which may allow them to take up more water.  But how does this translate to differences in green-up date and senescence date?


A student measures stem elongation on a senescent native shrub, the black sage Salvia mellifera, near the very end of the growing season. Credit: Ellen Esch.

The researchers used two different NDVI measures to help answer this question.  Maximum NDVI is the greatest daily NDVI measure over the course of the growing season.  It is correlated with the maximum productivity of the plant community (at its greenest!).  In contrast seasonally integrated NDVI is a measure of productivity summed over the entire growing season.  Keeping those distinctions in mind, under extreme drought maximum NDVI was much lower in the exotic plots than the native plots.  But exotic plot performance increased with rainfall, so that under the wettest conditions (normal rainfall), exotic plot maximum NDVI was similar to native plot maximum NDVI (graph a below). However, when considered over the entire growing season, native plots were consistently more productive than exotic plots (graph c below).


Effect of rainfall on (a) maximum NDVI (top left), (c) seasonally integrated NDVI (top right), (b) green-up date (bottom left) and (d) senescence date (bottom right). Colors indicate dominant plot community composition (yellow = herbaceous, green = shrub) and point shape indicates growing season year (circle = 2013, square = 2014, diamond = 2015, triangle = 2016).

Phenology played an important role accounting for these differences in seasonally integrated NDVI.  At all rainfall levels, the native plant communities greened-up well before the exotic plant communities (graph b above). Exotic plants greened-up somewhat earlier as rainfall increased, while native plant green-up date was independent of rainfall. At all rainfall levels, native plots senesced about one month later than exotic plots, with increased rainfall delaying senescence in both native and exotic plant communities (graph d above).

Esch and her colleagues conclude that species composition (native shrub vs. exotic herbaceous plants) and drought both influence phenology and productivity in this important ecosystem. Climate change is predicted to increase the frequency of extreme droughts in this and other ecosystems.  Consequently, drought coupled with invasion by herbaceous species threatens to sharply reduce ecosystem productivity, which will decrease the food available for consumers and decomposers, and simultaneously reduce the amount of carbon dioxide taken up and stored by the ecosystem, thereby contributing to further climate change.

note: the paper that describes this research is from the journal Ecology. The reference is Esch, E. H.,  Lipson, D. A., and  Cleland, E. E.  2019.  Invasion and drought alter phenological sensitivity and synergistically lower ecosystem production. Ecology  100(10):e02802. 10.1002/ecy.2802. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2019 by the Ecological Society of America. All rights reserved.