Bird-friendly viticulture

If you are into wine, the Matorral of central Chile is viticulture heaven. This Mediterranean biome has very warm and dry summers and moderate, rainy winters – ideal conditions for grapes. The Matorral’s natural vegetation is a diverse sclerophyll forest composed of trees and shrubs with hard, short and often spikey leaves. Many of these trees and shrubs are endemic – found in the matorral and nowhere else, as are some of the animals that depend on the vegetation for sustenance, making this region a “biodiversity hotspot”.  Humans enjoy its benign climate as well, which is why most of Chile’s population and largest cities occupy this bioregion.  

Mattoral ecosystem dominates central Chile. Credit: A. Muñoz-Sáez

Unfortunately, the demands of humans for wine and domiciles can come into conflict with the Matorral’s biological diversity.  Much of the natural vegetation has already been cleared and most is privately owned, so there is little potential for setting up large preserves.  As a long-time bird enthusiast, Andrés Muñoz-Sáez wondered whether even small pockets of natural vegetation could help maintain the biologically diverse bird community in the region.  So he and his colleagues conducted a series of systematic surveys to see whether the presence of remnant natural vegetation in the immediate area, or the presence of a continuous forest nearby, increased bird diversity within a vineyard.

A vineyard in central Chile shrouded by fog and surrounded by a sclerophyll forest. Credit: A. Muñoz-Sáez

The researchers conducted 6 auditory and visual surveys for birds in 2014 at 20 vineyards that differed in the amount of surrounding natural vegetation.  They repeated this process early and late in the 2015 breeding season, for a total of 360 surveys. There were three types of surveys: (1) Within the vineyard with no natural vegetation remnants within 250 meters, (2) within remnants within the vineyard, and (3) within native vegetation adjacent to the vineyard.  The mean size of a remnant was 0.17 hectares. All told, the researchers recorded 5068 birds belonging to 48 species.

A burrowing owl keeps watch while perched on a vineyard fencepost. Credit: A. Muñoz-Sáez

Both species richness (left graph below) and overall bird abundance (right graph below) were lowest in the vineyards without remnants nearby, and highest in remnants and in the surrounding matorral. Richness and abundance were very similar in remnants compared to the surrounding matorral. 

Species richness (mean number of species – left graph) and mean number of birds (right graph) per survey conducted in surrounding matorral (M), remnants within a vineyard (R) and in vineyard with no nearby remnants (V). Error bars are 1 standard error. Horizontal bars with *s above bars indicate statistical differences between treatments. * = P < 0.05. *** = P < 0.001.

From the standpoint of species composition (which species were present), bird communities in vineyards with remnants were more like those found in surrounding matorral than like those in vineyards without remnants. Perhaps most important from the standpoint of conserving biological diversity, the mean number of endemic bird species was greatest in matorral (3.02 endemic birds per survey), intermediate within remnants (1.11) and negligible within the vineyard without remnants nearby (0.03).

Muñoz-Sáez and his colleagues advocate retaining remnant native vegetation within vineyards to provide local habitat for native birds.  Their surveys indicated that insectivorous birds were more than six times as likely in remnants than in vineyards far removed from remnants.  From the standpoint of providing ecosystem services to humans, insectivorous birds can benefit vineyard production by removing unwanted insect pests. Given that many remnants are in less productive areas such as steep slopes, or along streams, the costs of maintaining and not developing these remnants are relatively minor, while the benefits to the viticulturist and the ecosystem can be substantial.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Muñoz‐Sáez, A., Kitzes, J. and Merenlender, A.M., 2021. Bird‐friendly wine country through diversified vineyards. Conservation Biology35(1), pp.274-284. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2021 by the Society for Conservation Biology. All rights reserved.

Birds and plants team up and trade off

For many years, ecologists have been puzzling over the question of why the world is so green.  Given the abundance of herbivores in the world, it seems, on the surface, that plants don’t stand a chance. The famous naturalist/ecologist Aldo Leopold was one of the first scientists to emphasize the role of predators, which provide service for plants by eating herbivores (his example was wolves eating deer, ultimately preserving the plant community growing on a hillside).  As it turns out there are many different predator species providing these services. Colleen Nell began her PhD program with Kailen Mooney with a keen interest on how insectivorous birds locate their prey, and how this could affect the plants that are being attacked by herbivorous insects.

COYE common yellowthroat simple

 A Common Yellowthroat perches on Encelia californica. Credit: Sandrine Biziaux.

Plants are not as poorly defended as you might expect (having sat on a prickly pear cactus I can  painfully attest to that).  In addition to thorns and other discouraging structures, many plants are armed with a variety of toxins that protect them against herbivores.  Thorns and toxins are examples of direct defenses.  But many plants use indirect defenses that involve attracting a predator to the site of attack.  Some plants emit volatile compounds that predators are attuned to; these compounds tell the predator that there is a yummy herbivore nearby.  Nell and Mooney recognized that plant morphology (shape and form) could also act as an indirect defense, making herbivorous insects more accessible to bird predators. They also recognized that we might expect a tradeoff between how much a plant invests in different types of defense.  For example, a plant that produces nasty thorns might not invest so much in a morphology attractive to predaceous birds.

pricklypearcawr_2

California Coastal Cactus Wren eating an orthopteran insect on a prickly pear cactus. Credit: Sandrine Biziaux.

What is a plant morphology that attracts birds?  The researchers hypothesized that birds might be attracted to a plant with simple branching patterns, so they could easily land on any branch that might be hosting a herbivorous insect (Encelia californica (first photo) has a simple or open branching pattern).  In contrast, birds might have a more difficult time foraging on insects that feed on structurally complex plants that host herbivorous insects which might be difficult to reach.

isocoma menziesii complex

Isocoma menziesii, a structurally complex plant. Credit: Colleen Nell.

The researchers chose nine common plant species from the coastal sage scrub ecosystem – a shrub-dominated ecosystem along the southern California coast. For each plant species they measured both its direct resistance and indirect resistance to herbivores.  Plants of each species were raised until they were four years old.  Then, for three months during bird breeding season, bird-protective mesh was placed over eight plants of each species, leaving five or six plants as unprotected controls.

IMG_3938

Kailen Mooney and Daniel Sheng lower bird-protective mesh over a plant. Credit: Colleen Nell.

After three months, the researchers vacuumed all of the arthropods from the plants, measured each arthropod, and classified it to Order or Family to evaluate whether the arthropod was herbaceous.

IMG_vaccum

Colleen Nell vacuums the arthropods from Artemisia californica. Credit: Colleen Nell.

Nell and Mooney evaluated the herbivore resistance of each plant species by measuring herbivore density in the bird-exclusion plants.  Relatively few herbivorous arthropods in plants that were protected from birds would indicate that these plants had strong direct defenses against herbivores.  The researchers also evaluated indirect defenses as the ratio of herbivore density on bird exclusion plants in comparison to controls (technically the ln[exclusion density/control density]).  A density of herbivores on plants protected from birds that is much greater than the density of herbivores on plants that allowed birds would indicate that birds are eating many herbivores. Finally, Nell and Mooney estimated plant complexity by counting the number of times a branch intersected an axis placed through the center of the plant at three different angles.  More intersecting branches indicated a more complex plant.

The researchers expected a tradeoff between direct and indirect defenses.  As predicted, as herbivore resistance (direct defense) increased, indirect defenses from birds decreased among the nine plant species.

NellFiga

Tradeoff between direct herbivore resistance and indirect defense by predaceous birds, for nine common plant species in the coastal sage scrub ecosystem.

The researchers also expected that more structurally complex plants would be less accessible to birds because complex branching would interfere with bird perching and foraging.  Thus Nell and Mooney predicted that structurally more complex plants would have weaker indirect defenses from birds, which is precisely what they discovered.

NellFigc

Indirect defenses (from birds) in relation to plant structural complexity .

Given that structurally complex plants received little benefit from birds, you might expect that they had greater direct defenses in the form of herbivore resistance.  Once again the data support this prediction.

NellFigb

Direct defenses (herbivore resistance) in relation to plant  structural complexity.

Initially, Nell was uncertain about whether increased plant complexity would deter insectivorous birds.  She points out that the top predators in this ecosystem are birds of prey that circle overhead in search of vulnerable birds to eat.  Structurally complex plants might provide refuge for insectivorous birds, which could result in them spending more time foraging in complex plants.  But the research showed the opposite trend. Plant complexity reduced the foraging efficiency of these small insectivorous birds, who prefer foraging on plants with relatively simple structure, which are easier to access and tend to host more prey.

note: the paper that describes this research is from the journal Ecology. The reference is Nell, C. S., and  Mooney, K. A..  2019.  Plant structural complexity mediates trade‐off in direct and indirect plant defense by birds. Ecology  100( 10):e02853. 10.1002/ecy.2853.  Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2019 by the Ecological Society of America. All rights reserved.

Fast living vs. slow and steady

Fast living makes headlines, as evidenced by such notables as Freddie Mercury, Paul Walker and Lamar Odom.  Unfortunately the first two are dead while Odom was narrowly brought back from a near-death experience – all were victims of their fast life styles.  Like humans, some birds live fast and die young, while others live slow, but may survive to relatively ripe old ages.

Pic 2

The tiny rifleman (Acanthisitta chloris), reintroduced in Tiritiri Matangi, New-Zealand.  This endangered bird feeds on insects that it gleans from tree trunks.  It often has two clutches of 2-5 young per year. Credit: Simon Ducatez.

Simon Ducatez studied invasive cane toads with Rick Shine in Australia, and became interested in why some species were more likely than others to successfully invade new habitat.  The problem for answering that question is that most invasions are not studied until after the invasive species becomes established; by that time it may be too late to identify exactly what factors were responsible for the successful invasion. On his first visit to New-Zealand in 2016, Ducatez discovered ecosanctuaries – enclosed wildlife reserves where invasive predators are eliminated, and native animals (mostly birds) are introduced. He realised that these introductions could provide invaluable information on why species thrive or fail to become established in a new environment. At about the same time, a colleague drew his attention to a database developed by the Lincoln Park Zoo (LPZ) in Chicago, Illinois, which contains data on hundreds of intentional release events (translocation attempts), including information on the survival and reproduction of the released individuals. Analyzing how a species life history could affect the survival and reproduction of these voluntarily introduced populations would provide answers useful for restoration biologists who wish to return native species to habits where they were now extinct, and to ecologists who want to identify the factors promoting biological invasions.

Pic 7

The relatively massive and flightless south island takahe (Porphyrio hochstetteri), reintroduced in New-Zealand.  This bird was thought to be extinct but was rediscovered in 1948 and has benefited from active restoration programs. Credit: Simon Ducatez.

Life history traits are adaptations that influence growth, survivorship and reproduction of individuals of a particular species.  For each species in the LPZ dataset, Ducatez and Shine used the bird literature to gather data on body mass and four life history traits: maximum lifespan, clutch size, number of clutches per year, and age at first reproduction. They then used a statistical procedure – principle components analysis – which described each species based on their life history strategy.  Fast life styles were associated with small bodies, short lifespans, large clutch size and number, and early reproduction.  Slow life styles were associated with large bodies, long lifespans, small clutch size and number, and delayed reproduction. Ducatez and Shine then asked a simple question based on 1249 translocation events in the LPZ dataset – how do fast life style birds perform in comparison to slow life style birds following translocation?

It turns out that slow life style birds are much better at surviving translocation than are fast life style birds, at least when measured in the short term (one week) and the medium term (one month).

DucatezFig1ab

Association between life style as measured by principle component analysis (PC1 on X-axis) and survival (proportion of translocated individuals still alive on Y-axis). The left graph is survival to one week, while the right graph is survival to one month. 

In contrast, following translocation fast life style birds are more likely to attempt breeding and successfully breed than are slow life style birds.

DucatezFig1cd

Association between life style and probability of attempting breeding (left graph) and successfully breeding (right graph).

Ducatez and Shine suggest that both restoration biologists and invasion ecologists could use these findings to address major questions in their respective fields.  Restoration biologists wishing to return native species to previously occupied habitat might adopt different approaches based on a species life style. Species with fast life styles suffer from low survival, so restoration biologists should focus on promoting survival by controlling predators or provisioning extra food. Species with slow life styles suffer from low reproductive success, so conservation managers might consider providing extra nest boxes or other resources that promote successful breeding.

pic-14.jpg

A successful foraging event for an Atlantic puffin (Fratercula arctica), reintroduced in Maine, USA. Credit: Simon Ducatez.

This research informs invasion ecologists that the same trait can have opposite effects on the likelihood that a biological invasion will actually happen.  Thus a slow life style species is more likely to survive moving to a novel habitat, but is unlikely to breed successfully once it gets there.  In contrast a fast life style species is less likely to survive the move, but if it does survive, it may be more likely to successfully reproduce. How this plays out in actual biological invasions is yet to be determined, but at least we now have a better grasp on what factors we should be examining.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Ducatez, S. and Shine, R. (2019), Life‐history traits and the fate of translocated populations. Conservation Biology, 33: 853-860. doi:10.1111/cobi.13281. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2019 by the Society for Conservation Biology. All rights reserved.

Climate changes a bird’s life in shrinking grasslands

Back in graduate school, a couple of my grad student buddies and I would get together to fish for brown trout in the Kinnickinnic River in western Wisconsin.  We were students at the University of Minnesota (Twin Cities), but the Kinni was the closest trout stream.  Tired of catching small brown trout, we consulted a trout fishing map and discovered that the headwaters of the Kinni were rich in brook trout. So early one morning, map in hand, we followed strange paths and found our sacred brook trout haven. Alas, the only thing it was rich in was corn, now about two feet high – though there was a modest depression where trout waters once had flowed. Our personal depression was perhaps more than modest – having been robbed of brook trout, and the opportunity to experience some pristine waters flowing through a beautiful grassland.

Grasslands, one of the biomes native to parts of Wisconsin and Minnesota, are globally one of the most endangered biomes, because they usually are relatively easy to convert into farmland and suburban developments. Native grasslands harbor a wide biological diversity; consequently conservation biologists are concerned about their continued loss.

OLYMPUS DIGITAL CAMERA

Cool-season grassland in southwest Wisconsin. Credit: John Dadisman.

Ben Zuckerberg, Christine Ribic and Lisa McCauley wanted to know how environmental factors influenced the nesting success of grassland birds, in particular, because as obligate ground nesters, they might be susceptible to changing  weather conditions that will be affecting the climate in coming decades.  A nest built on the ground is much less insulated from the environment than one built in or on a tree or even a ledge.

Bobolink 7 days (Carolyn Byers)

Seven day old bobolink chicks in a ground nest. Credit: Carolyn Byers.

Zuckerberg and his colleagues used Google Scholar and the ISI Web of Science to comb the literature (1982-2015) for studies that explored the nest success of obligate grassland birds in the United States. They identified 12 bird species from 81 individual studies of 21,000 nests. Based on their experience and the literature, both precipitation and temperature were likely to influence nest success, which is the proportion of nests that fledge at least one young. They considered three precipitation time periods: (1) Bioyear – previous July through April of the breeding season, (2) May of the breeding season, (3) June – August of the breeding season. They considered breeding season temperatures during May, and during the period from June-August. The researchers were also interested in the size of the grassland (grassland patch size), reasoning that a larger grassland might provide more diverse microclimates, so, for example, a bird might be able to find a dry microhabitat for nesting in a large grassland, even in a wet breeding season.

ZuckFig1

Map of the identity and location of species considered for this study.

The researchers discovered that both temperature and precipitation were important.  Nest success increased steadily with bioyear precipitation (Figure (a) below).  Presumably, more rain led to more plant growth and more insect survival, which would help feed the young.  Taller plants could also help shade or hide the nests. In contrast, nest success declined sharply with precipitation during spring and summer of the breeding season (Figure (b) and (c)). Heavy rains during the breeding season can flood nests, and also decrease the foraging efficiency of parents who might need to spend more time incubating nests during rainstorms. Lastly, extreme (low or high) May temperatures depressed nest success, which was highest at intermediate temperatures (Figure (d)). Egg viability depends on maintaining a constant temperature, and the parents may be more challenged to thermoregulate at extreme temperatures.  Temperatures later in the breeding season did not affect nest success.

ZuckFig2

Effects of (a) bioyear precipitation (previous July – April of the breeding season), (b) May precipitation during the breeding season, (c) June – August precipitation during the breeding season, and (d) May temperature on nest success. Shaded area represents 95% confidence interval.

But all is not straightforward in the grassland nest success world. These main findings about precipitation and temperature interacted with grassland size in interesting ways.  For example high bioyear precipitation, which overall increased nest success, only did so for smaller grassland patches (dashed line in top graph below), but not for larger patches (solid line).  Extreme May temperatures had different effects on nest success in relation to grassland patch size.  Low May temperatures were associated with high nest success in small patches (dashed line in bottom graph) and with low nest success in large patches (solid line).  High May temperatures were associated with high nest success in large patches, and with low nest success in small patches.

ZuckFig3

Predicted nest success of grassland birds in relation to bioyear precipitation (top graph) and May temperature (bottom graph) in relation to grassland patch size.  Solid lines represent large grasslands, while dashed lines represent small grasslands.  Shaded area is 95% confidence interval.

The researchers were surprised to discover that patch size affected how weather influenced grassland bird nesting success. Some of the patterns seem intuitively logical; for example, in unusually hot breeding seasons birds had higher nest success in larger grasslands than in smaller grasslands.  Presumably, birds were more likely to find a cooler microclimate for their nests in a large grassland.  However it is puzzling why in unusually cold breeding seasons birds had higher nest success in smaller grasslands. The researchers are planning a follow-up study to better document and measure the existence of microclimates in grasslands of different sizes, and explore how different microclimates influence the nesting success of vulnerable grassland birds.  Finding that warmer temperatures and drought generally reduce nest success to the greatest extent in small grassland patches is strong incentive for conservation mangers to establish large core grasslands as a tool to maintain bird populations in the wake of present and future changes to the climate.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Zuckerberg, B. , Ribic, C. A. and McCauley, L. A. (2018), Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conservation Biology, 32: 872-882. doi:10.1111/cobi.13089. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2018 by the Society for Conservation Biology. All rights reserved.

 

Eavesdropping on antshrikes

Growing up in the Spy vs. Spy era, and a bit later in the Watergate age, I developed a keen appreciation for clandestine operations, which I assumed at that time were unique to human culture.  As it turns out, eavesdropping is practiced by many different species for a variety of reasons. One important example occurs in bird flocks composed of several species of birds. Antshrikes (Thamnomanes ardesiacus) are sentinel species in multi-species flocks because they produce alarm calls when they spot a predacious raptor flying overhead, alerting other nearby birds of the threat. Ari Martinez and his colleagues wondered whether hanging out with antshrikes allowed these other bird species to expand their niches to forage in areas that might otherwise be too dangerous.

Alarm calling species Thamnomanes ardesiacus Photo cred E. Parra 600dpi (1)

An antshrike perched in the Amazonian rainforest. Credit: E. Parra.

This fear-based niche shift hypothesis makes two related predictions.  First, in the absence of antshrikes, the remainder of the flock should shift its range to areas with lower predation risk.  Second, without antshrikes some birds might leave the flock entirely, because without sentinel services they no longer benefit from hanging with other birds. To test these predictions, Martinez and his colleagues identified eight flocks of 5-8 species (including antshrikes) in a tropical lowland forest in southeastern Peru.  They established four removal flocks from which they removed all antshrikes after capturing them in mist nets. They left four control flocks, in which they captured all antshrikes, but then returned them to the flock (to control for the effects of handling).

Group banding and mist netting birds photo ced Micah Reigner

Research team mist-netting and measuring antshrikes.  Credit Micah Reigner

To determine where the flock was spending its time, researchers used a GPS device every 10 minutes to record the center of the flock. They also censused each flock for species composition from dawn to dusk for three days before removal and three days after removal. In control flocks, home range overlapped extensively (average of 69%) when comparing the first (pre-removal) and second (post-removal) three-day period. In removal flocks, there was only 8% overlap in home range, indicating that the remaining flock was shifting its range when antshrikes were gone.

MartinezFig1

Home ranges of a control flock (top) and a flock which had antshrikes removed (bottom). Red color indicates home range during the three day pre-removal period, while blue color indicates home range during the three day post-removal period.  Deeper colors indicate greater occupancy. 

But are the remaining species shifting their niches to safer locations when antshrikes are no longer available as sentinels? To answer this question the researchers measured the presence or absence of vegetation cover at different height intervals every 10 minutes at the center of the flock. Comparing the second (post-removal) to the first (pre-removal) period, the removal flocks (those without antshrikes) moved into understory vegetation (0-8 meters high) that was substantially denser than was the vegetation inhabited by the control flocks (those with antshrikes). Presumably, dense understory protects birds without sentinels from being spotted or captured by raptors flying overhead. These dense understory areas are usually associated with less tree cover at higher height intervals (above 16 meters), which allows more sunlight to reach the forest floor, resulting in lush vegetation growth.

MartinexFig3

Proportion change in vegetation cover occupied by flocks from pre-trial to post-trial period at different height intervals.  Positive numbers indicate an increase in vegetation density. Error bars are 95% confidence intervals. Data are based on the behavior of four control and four removal flocks.

Flocking occurrence is the proportion of time individuals of a particular species spend in flocks.  The fear-based niche shift hypothesis predicts that flocking occurrence should decrease when sentinel species are removed because the benefits of flocking are reduced for the remaining species. When the researchers compared post-removal to pre-removal time-periods, five species showed strong reductions in flocking occurrence for removal flocks in comparison to control flocks, two were unchanged, and one species showed an increase in flocking occurence.

MartinezFig2

Change in proportion flocking occurrence for eight different flocking species in control and removal flocks.  Error bars are 95% confidence intervals.  Chlorothraupis carmioli (CHCA), Epinecrophylla erythrura (EPER), Epinecrophylla leucophthalma (EPLE), Glyphorynchus sprirus (GLSP), Hylophilus ochraceiceps (HYOC), Myrmotherula longipennis (MYLO), Myrmotherula menetriesii (MYME), Xiphorhynchus elegans (XIEL).

The authors emphasize that though flocking occurrence decreased for most species, the flocks did remain intact, which indicates that there are probably other benefits from flocking besides the opportunity to eavesdrop. There might be safety in numbers – a decrease in individual mortality as group size increases, or the possibility that the remaining flock members do provide some information about imminent predator attacks.

Martinez and his colleagues conclude that sentinels help other bird species succeed in tropical rainforests, thriving in dangerous habitats where they might otherwise fear to tread.  These species may provide important ecosystem services, such as dispersing seeds and eating herbivorous insects that threaten plants that are the foundation of these tropical ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Martínez, A. E., Parra, E. , Muellerklein, O. and Vredenburg, V. T. (2018), Fear‐based niche shifts in neotropical birds. Ecology, 99: 1338-1346. doi:10.1002/ecy.2217. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

 

Prey populations: the only thing to fear is fear itself

In reference to the Great Depression, Franklin Delano Roosevelt is famously quoted as stating during his 1933 inaugural speech “the only thing we have to fear is fear itself.” Roosevelt was no biologist, but his words could equally apply to a different type of depression – the decline of animal populations that can be caused by fear.

FDR

Roosevelt’s inauguration in 1933. Credit: Architect of the Capitol.

Ecologists have long known that predators can depress prey populations by killing substantial numbers of their prey. But only in the past two decades or so have they realized that predators can, simply by their presence, cause prey populations to go into decline. There are many different ways this can happen, but, in general, a predation threat sensed by a prey organism can interfere with its feeding behavior, causing it to grow more slowly, or to starve to death. As one example, elk populations declined after wolves were introduced to Yellowstone National Park. There are many factors associated with this decline, but one factor is fear of predators causes elk to spend more time scanning and less time foraging. Also, elk tend to stay away from wolf hotspots, which are often places with good elk forage.

Liana Zanette recognized that ecologists had not considered whether predator presence can cause bird or mammal parents to reduce the amount of provisioning they provide to dependent offspring, thereby reducing offspring growth and survival, and slowing down population growth. For many years, she and her colleagues have studied the Song Sparrow, Melospiza melodia, on several small Gulf Islands in British Columbia, Canada. In an early study, she showed that playbacks of predator calls reduced parental provisioning by 26%, resulting in a 40% reduction in the estimated number of nestlings that fledged (left the nest). But, as she points out, Song Sparrow parents provision their offspring for many days after fledging; she wondered whether continued perception of a predation threat during this later time period further decreased offspring survival and ultimately population growth.

Song sparrow

The Song Sparrow, Melospiza melodia. Credit: Free Software Foundation.

Zanette’s student, Blair Dudeck, did much of the fieldwork for this study. The researchers captured nestlings six days after hatching , weighed and banded them, and fit them with tiny radio collars. They then recaptured and weighed the nestlings within a few hours of fledging (at about 12 days post-hatching) to assess nestling growth rates.

sparrowbaby

Banded sparrow nestling with radio antenna trailing from below its wing. Credit: Marek C. Allen.

Three days after the birds fledged, Dudeck radio-tracked them, and surrounded them with three speakers approximately 8 meters from where they perched. For one hour, each youngster listened to recordings of calls made by predators such as ravens or hawks, followed, after a brief rest period, by one hour of calls made by non-predators such as geese or woodpeckers (or vice-versa). During the playbacks, Dudeck observed the birds to record how often the parents visited and fed their offspring, and whether offspring behavior changed in association with predator calls. This included recording all of the offspring begging calls.

BlairRadio

Blair Dudeck simultaneously uses a tracking device to locate Song Sparrows and a recorder mounted to his head to record their begging calls. Credit: Marek C. Allen.

Fear had a major impact on parental behavior. Parents reduced food provisioning vists by 37% when predator calls were played in comparison to when non-predator calls were played. They also fed offspring fewer times per visit, which resulted in 44% fewer meals in association with predator calls.

DudeckFig1

Mean number of parental provisioning visits (in one hour) in relation to whether predator (red) or non-predator (blue) calls were played. Error bars are 1 SE.

Hearing predator calls had no effect on offspring behavior – they continued to beg for food at a high rate, and did not attempt to hide.

Some parents were much more scared than others – in fact, some parents were not scared at all. The researchers measured parental fearfulness by subtracting the number of provisioning visits by parents during predator calls from the number of visits during non-predator calls. A more positive number indicated a more fearful parent (a negative number represents a parent who fed more in the presence of predator calls). The researchers discovered that more fearful parents tended to have offspring that were in poorer condition at day 6 and at fledging.

DudeckFig2

Offspring weight on day 6 (open circles) and at fledging (solid circles) in relation to parental fearfulness.  Higher positive numbers on x-axis indicate increasingly fearful parents.

Importantly, more fearful parents tended to have offspring that died at an earlier age. Based on this finding, the researchers created a statistical model that compared survival of offspring that heard predator playbacks throughout late-development with survival of offspring that heard non-predator playbacks during the same time period. They estimated a 24% reduction in survival. Combined with their previous study on playbacks during early development, the researchers estimate that hearing predator playbacks throughout early and late development would reduce offspring survival by an amazing 53%.

This “fear itself” phenomenon can extend to other trophic levels in a food web. For example recent research by Zanette and a different group of researchers showed that playbacks of large carnivore vocalizations dramatically reduced foraging by raccoons on their major prey, red rock crabs. When these carnivore playbacks were continued for a month, red rock crab populations increased sharply. This increase in crab population size was followed by a decline of the crab’s major competitor – the staghorn sculpin, and the crab’s favorite food, a Littorina periwinkle. Thus “fear itself” can cascade through the food web, affecting multiple trophic levels in important ways that ecologists are now beginning to understand.

note: the paper that describes this research is from the journal Ecology. The reference is Dudeck, B. P., Clinchy, M., Allen, M. C. and Zanette, L. Y. (2018), Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology, 99: 127–135. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Blinded by the light: victims of the night

In late October, the municipality of Buenavista del Norte on the Canary Island of Tenerife, celebrates the day of the Virgin of Los Remedios, including, among other features, a big light display. As a child, Airam Rodríguez noticed that many shearwaters would also drop in (literally) for the festivities, attracted by the bright lights, but unable, in many cases, to get back in the air. Many of these shearwaters died from a variety of causes, including the impact of flying into the ground, dehydration, predation and poaching. As an adult, Rodríguez collaborated with researchers around the world to evaluate the scope of light-induced shorebird fallout.

short-tailed-shearwater-fledgling-grounded-by-lights-photo-airam-rodrc3adguez.png

Fallout victim: grounded Short-tailed Shearwater. Credit: Airam Rodríguez

The researchers began their work by searching a science citation index – the Web of Science – for articles on light-induced seabird mortality. They used references from these articles to find additional articles. In addition, they used the internet and social media to find programs in which citizens are encouraged to report grounded birds, and contacted people associated with these programs to get qualitative and quantitative data.

Rodríguez and his colleagues discovered light induced seabird fatality on 47 islands, three continental locations and across all of the world’s oceans. Of 115 species of burrow-nesting petrels, 56 have been reported as grounded by light. Several other groups of birds, including puffins, auklet and eiders also suffer from light-induced fallout, and it is very likely that more species are unreported.

RodriguezFig1

Numbers of reported grounded seabird fledglings across the globe.  Circle size = numbers of birds  reported. Numbers = number of species affected. Circle color = IUCN (endangerment) category for each species as follows: CR = critically endangered, EN = endangered, VU = vulnerable, NT = near threatened, LC = least concern.

Of deep concern is that 24 species are globally threatened. In addition, fallout has been reported at sea, induced by lights used for fisheries and by lights on oil platforms. All of the studies of light-induced fatalities on land documented the highest mortality in fledglings that are grounded during their first flights from their nests toward the ocean.

RodriguezFig2

Numbers of species of threatened seabirds that were rescued across the globe.  Numbers were not available for species with ? symbol.

Researchers don’t know why birds are attracted to lights. Perhaps birds view lights as a source of food; for example some species eat bioluminescent prey. Alternatively, as cavity-nesting birds, the only light these chicks see is from their burrow entrance, particularly when their parents bring in food, so the fledglings might confuse light with a food source. Lastly, artificial lights might override any celestial light cues the birds normally use for navigation, confusing them and causing them to crash to the ground. Supporting this hypothesis, seabirds generally don’t crash into lights, which might be expected if they mistook a light for bioluminescent prey.

Cory's shearwater fledgling at their nest at Tenerife Canary Islands. Photo by Beneharo Rodríguez

Fledgling Cory’s Shearwater first sees the light of day after emerging from its burrow at Arona on southern Tenerife Island. Credit: Beneharo Rodríguez

So what can be done about this problem? Accurate data are hard to come by, as many estimates of fallout-induced mortality come from relatively untrained volunteers, who are less likely to report dead birds. As one example, on Kauai, surveys from a general public rescue program for Newell’s Shearwaters identified 7.7% mortality, whereas later systematic surveys by trained researchers indicated 43% mortality. In some rescue operations, birds are banded and released, which, in theory, allows researchers to estimate the survival rate of rescue birds, but, in practice, these data are usually insufficient for accurate estimates

Rodríguez and his colleagues recommend a multipronged approach to combat seabird fallout. Individuals grounded by artificial lights can be rescued so they don’t succumb to the common causes of death – dehydration, predation and vehicle collision. In many cases the general public takes birds to designated rescue stations, where they are cared for until judged to be ready to release. The first rescue program was set up on Kauai in 1978; since then, people working for 16 rescue programs have released over 40,000 birds.

Release of a grounded shearwater. Photo Nazaret Carrasco (1)

Beneharo Rodríguez releases a Cory’s Shearwater from a cliff at Buenavista del Norte on Tenerife Island. Credit: Nazaret Carrasco.

The birds would be best served if humans behaved in ways that minimized fallout. Researchers need to learn more about why birds are attracted to artificial lights so engineers can develop outside lights that don’t attract them. Existing lights can be turned off when not needed, and dimmed when they are essential. Special accommodation can be made for unusual cases; for example in Cilaos, Reunion, Indian Ocean, streetlights are turned off during the fledging period of Barau’s Petrel. Lights can also be shielded so they illuminate an area for humans, but minimize the light visible to birds. Degraded nesting and breeding habitat can be restored to help compensate for birds that are lost to fallout. Lastly, conservation efforts should benefit the local economies so that residents will be more likely to support conservation initiatives, such as reduced evening lighting, that they might otherwise oppose.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Rodríguez, A., Holmes, N. D., Ryan, P. G., Wilson, K.-J., Faulquier, L., Murillo, Y., Raine, A. F., Penniman, J. F., Neves, V., Rodríguez, B., Negro, J. J., Chiaradia, A., Dann, P., Anderson, T., Metzger, B., Shirai, M., Deppe, L., Wheeler, J., Hodum, P., Gouveia, C., Carmo, V., Carreira, G. P., Delgado-Alburqueque, L., Guerra-Correa, C., Couzi, F.-X., Travers, M. and Corre, M. L. (2017), Seabird mortality induced by land-based artificial lights. Conservation Biology, 31: 986–1001. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Biological control: birds vs. (insects vs. insects)

We all know that birds eat crop-destroying bugs, so we might think that farmers would welcome insectivorous birds to their fields with radiant rakes or happy hoes. But not so fast! Research by Ingo Grass and his colleagues alerts us to the reality that not all insects are created equal. Some insects eat crops, but some insects eat insects that eat crops.

Aphids are one of the worst scourges of the agricultural world. They suck the phloem sap from many plant species; this action can kill the plant directly, and also cause infections by plant pathogens and viruses. Fortunately for farmers, many animals enjoy eating aphids, including birds such as the Eurasian Tree Sparrow, Passer montanus, and insects such as ladybird beetles and hoverfly larvae.

hoverfly4

Hoverfly larva consumes an aphid while a second aphid looks on. Credit: Beatriz Moisset.

Grass and his colleagues knew that sparrows eat both aphids and hoverflies, but they did not know how the effects of bird predation on these insects cascaded down to the oats and wheat crops grown near Gottingen, Germany. Their research tested the hypothesis that sparrows eat so many hoverflies that aphid abundance actually increases (despite also being eaten by sparrows), and oat and wheat abundance decreases (top food web in the diagram below). If so, they reasoned that removing the birds would increase hoverfly abundance, thereby decreasing aphids and increasing grain abundance (bottom food web).

IngoFig1

Agricultural food web with (top) and without (bottom) sparrows. Arrows show consumption, with dashed arrows indicating weak effects, and solid arrows and doubled organisms indicating strong effects.

The researchers set up an experiment with 11 nest boxes strategically placed between an oat field and a wheat field. Each box was equipped with a camera, so the researchers could see what the parents fed to their nestlings. In addition, Grass and his colleagues set up eight 4 X 5 meter plastic mesh exclosures which excluded birds, but allowed insects free access. They periodically surveyed 50 plants in each exclosure and in equal-sized control plots for hoverflies and aphids over the course of the sparrow breeding season. Because these birds can have three broods, this project kept them (the sparrows and the researchers) busy from early May to late July.

IngoFig2bcd

The birds fed very little on the two grain fields during the first brood, but towards the end of their second brood, they turned their attention to feeding on insects from the two grain fields, and later to eating the ripening grain. One important finding is that bird predation severely reduced hoverfly abundance. By early July hoverfly abundance was about 1 per 50 shoots when birds were present, and more than 3 per 50 shoots when birds were excluded (top graph below).

IngoFig4

 

How did hoverfly consumption translate to aphid abundance? As you can see from the bottom graph, by early July, aphid abundance without birds was considerably lower than aphid abundance in the presence of birds. Taken together, these findings indicate that European Tree Sparrows consume hoverflies, which ultimately leads to an increase in aphid abundance.

Grass and his colleagues conclude that insectivorous birds can interfere with natural pest control of cereal production in central Europe. When birds were experimentally excluded, aphid densities declined 24% in wheat and 26% in oat crops. European Tree Sparrows were doubly bad for the crops, as they also harvested substantial quantities of grain from these fields to feed their third brood. The researchers argue that management of biological control systems for agriculture requires a broad food-web perspective that accounts for trophic cascades, such as the interactions that occur among sparrows, hoverflies, aphids and various types of economically important grain crops.

note: the paper that describes this research is from the journal Ecology. The reference is Grass, Ingo, Katrin Lehmann, Carsten Thies, and Teja Tscharntke. 2017. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98 (6): 1583-1590Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Golden Eagles: no tilting at windmills

Todd Katzner and several other scientists were puzzled by a vexing problem. They knew that the wind turbines at Altamont Pass Wind Resource Area (APWRA) were killing large numbers of Golden Eagles that flew into their spinning blades. Yet the population of Golden Eagles in the area had stayed relatively stable over the years despite this unnatural source of mortality. The researchers considered two possibilities. First, this population of eagles may have had unusually high birth rates or unusually low death rates from other sources to compensate for the high windmill-induced mortality. Alternatively, immigrant Golden Eagles might be replacing those killed by turbines.

Altamont Pass Wind Farm

Altamont Pass Wind Farm, California. Credit: Todd Katzner.

This question has important implications for conservation biologists. If immigrant Golden Eagles are replacing those killed by windmills at APWRA, then the apparent stability of the local Golden Eagle population may be at the expense of other populations that are providing APWRA with these immigrants. So, even though APWRA’s windmills are not directly causing local eagle populations to decline, windmills at APWRA (and other windmill sites) may be indirectly leading to a decline in other populations. So Katzner and his colleagues did genetic and molecular analyses of tissues remaining from these killed eagles to learn as much as they could about these eagles and where they came from.

Golden Eagle in flight

Golden Eagle in flight. Credit: Michael J. Lanzone.

The researchers used tissue samples from 67 eagles that were killed at APWRA between 2012-2014. They subjected these tissues to a variety of genetic tests to determine the sex and age of each individual, and to evaluate the genetic differences between individuals killed by the windmills.

In addition, Katzner and his colleagues used stable isotope analysis to evaluate whether the killed individuals were local birds, or immigrants from afar. For this analysis the stable isotope ratio is the ratio of a rare and nonradioactive isotope of hydrogen (2H) found in the sample (feathers of killed birds) in relation to the common isotope (1H). A feather’s stable isotope ratio is very tightly correlated to the stable isotope ratio of the water the bird drinks. The last important point is that different regions of the world have different characteristic stable isotope ratios in rainwater. So if you can determine the stable isotope ratio of a bird’s feather, you can compare it to the world stable isotope ratio map, and determine where the bird most likely spent the previous year (once birds molt, their new feathers assume the stable isotope ratio of their new location). This approach will underestimate the number of immigrants, because some distant locales have a similar stable isotope ratio as APWRA, and birds from those regions will be incorrectly scored as being local.

Stable isotope map

Map of May-August stable isotope ratios (of 2H in rainwater).  Same colors represent similar stable isotope ratios, ranging from relatively high ratios (deep orange), to relatively low ratios (dark blue). I don’t discuss the meaning of the circles and triangles in this blog post.

Based on this analysis, more than 25% of the dead eagles were immigrants to the area, with some birds originating from more than 800 km away. The researchers point out that APWRA might be particularly attractive to eagles looking for a home because it provides two types of resources that are important to these birds – visually open feeding grounds with easily-located prey, and a consistent updraft to facilitate relatively effortless flight.

Fig 3a

Probability that an eagle killed at APWRA was local.  If the probability was less than 0.5 the researchers scored it as immigrant; if greater than 0.5 the researchers scored it as local.

About half of the immigrants that could be sexed were juveniles or subadults. The researchers argue that the apparent stability of the population in the APWRA region is achieved by young immigrants replacing those birds that are killed by windmills.

Fig3b

Percentage of local vs. immigrant (nonlocal) Golden Eagles by age.

Katzner and his colleagues are concerned that APWRA functions as an ecological sink that attracts eagles, primarily from nearby western states, to replace those killed by windmills. High death rates are particularly problematic to slow-growing populations, such as Golden Eagles, which usually lay only two eggs, with generally only one surviving chick per breeding season (the larger chick often kills its sibling). The researchers also point out that windmills also kill many other animals, including numerous bat species, which also have slow-growing populations. They encourage the renewable-energy industry to develop technology that will reduce windmill-induced death. Such efforts are already underway, and there is preliminary evidence that newer generation turbines are reducing Golden Eagle mortality rates.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Katzner, T.E., Nelson, D.M., Braham, M.A., Doyle, J.M., Fernandez, N.B., Duerr, A.E., Bloom, P.H., Fitzpatrick, M.C., Miller, T.A., Culver, R.C. and Braswell, L., 2017. Golden Eagle fatalities and the continental‐scale consequences of local wind‐energy generation. Conservation Biology31(2): 406-415.Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Highly disturbed birds

About 50 million years ago, the fast-moving Indo-Australian plate crashed into the Eurasian plate, giving rise to the Indian peninsula, and beginning a process of faulting and folding that ultimately formed our present day Himalaya Mountains. This process continues today, with the Himalayas still rising about 5 mm per year. The region is very variable, with tremendous glaciers and snowfields at high elevations, and forests and grasslands at lower elevations.

DSC03462

The lead Author, Paul Elsen, stands in front of the Tirthan Valley.  The highest peaks range up to 4900 meters.

The variation in elevation, climate and soils make the Himalyan region in northern India a mecca of biological diversity, hosting over 10,000 identified plant species and about 1000 bird species. As in most of India, human population growth is putting enormous pressure on the forested regions, partly as a source of wood for heating and cooking, which has led to extensive deforestation. In concert, substantial forested areas are being converted to farms or pastures to feed the growing population. Paul Elsen and his colleagues wanted to know how these transformations of forests to cropland and pastures were affecting bird population across the region. They were particularly interested in how birds survived the winter, a period of climatic stress and food scarcity, when many of the birds descend from their high elevation breeding grounds to lower elevations that are nearer to human populations.

DSC_3132

Chestnut-headed Tesia, an altitudinal migrant found in high elevation forests in summer, and in forests and agricultural lands in winter. Credit: Prashant Negi.

The researchers set up three transects across four different landscapes (total of 12 transects), representing four levels of disturbance. The undisturbed landscape was primary forest in the Great Himalayan National Park. A second disturbance type – low intensity – retained a mixture of community forest used for timber and fuel, and also included some small agricultural plots. A third disturbance type – medium intensity – had small wooded areas, but was dominated by mixed agriculture including orchards and a variety of crops such as grains, beans and garlic. The final disturbance type – high intensity – was used as pasture, had mostly grasses and very few trees or crops.

ElsenDisturbances

Four land-use types. Credit Paul Elsen

The basic research protocol was literally a walk in the woods. Elsen walked (slowly) along the same trail in each transect three times during the winter season, and identified and counted all of the birds. Other researchers identified, measured and counted the plants growing along the transects.

DSC03948

Lead field assistant, Lal Chand (left), and co-author Kalyanaraman Ramnarayan (right) conduct plant surveys near the top of the world.

 

Elsen was stunned by what his team discovered. Before beginning this study, he had spent about a year in the Himalayas within intact forests doing other PhD-related research. His travels into surrounding villages showed significant bird activity, but he assumed these birds were primarily species associated with humans or more open habitats. He expected decreasing bird diversity and abundance with increasing agricultural intensification, where the bird communities in intact primary forest would be teeming with species in high densities, and the areas with mixed agriculture and intensively grazed pastures would have just a few species. The data below paint a contrasting picture.

ElsenFig3

Mean and standard error of (a) bird abundance and (b) number of bird species per site across the four land-use types.

Primary forest hosted the fewest number of birds and the fewest species of birds. Among the three disturbance levels, low- and medium-intensity had greater abundance and diversity than did the high-intensity disturbed sites. At least in the winter, low- and medium-intensity disturbed landscapes can be beneficial to bird populations. Elsen suggests that birds are attracted to the tremendous amount of food available in the agricultural lands, such as fruiting trees and shrubs, even in winter. Some birds can consume these fruits, while other birds consume the yummy energy-rich insects that are attracted to the fruit. There are also plenty of seeds available for granivorous birds. But high-intensity disturbed landscapes lack these benefits, leading to fewer forest-adapted bird species, which are replaced by open-country or generalist bird species.

DSCN9067

Pastoralist and his goats in a high-intensity disturbed site. Credit: Prashant Nagi.

 

The researchers caution that we still don’t know have a clear picture of how birds use different landscapes during the breeding season, although preliminary data indicate that more species are unique to primary forests during breeding season than in winter, and that fewer species inhabit intensively grazed pastures during breeding season than in winter. Consequently, Elsen and his colleagues recommend a holistic conservation approach, which recognizes the importance of conserving large portions of intact primary forest, while at the same time preserving landscapes with low- and medium-intensity agriculture.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Elsen, P. R., Kalyanaraman, R., Ramesh, K., & Wilcove, D. S. (2016). The importance of agricultural lands for Himalayan birds in winter. Conservation Biology 31 (2): 416-426. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.