Life and death in a diminutive ecosystem

Ecosystems are big things, as they encompass an entire community of organisms and the nonliving factors (such as nutrients and water) that interact with the community. So we’re accustomed to thinking about the Serengeti as an ecosystem, as it includes (among many things) the large animals, such as lions, wildebeest and buffalo that live there, the animals and plants they eat, and the soils and nutrients that feed these plants.

But ecosystems can also be tiny. Let’s think about an individual tank bromeliad, Quesnelia arvensis, which can hold up to 3 liters of water in tanks formed where individual leaves come together. Gustavo Romero has identified over 140 species of invertebrates that live within these natural tanks, including large predators such as damselfly and tabanid larvae, and many species of smaller predators (mesopredators) including a diverse group of chironomid midges. The larger predators eat the smaller predators, while predators of both sizes eat a very diverse group of detritivores – animals that feed on the remains of dead organisms. The terrestrial fauna in the immediate vicinity are spiders. Visitors from the surrounding forest ecosystem include 12 bird species and 6 frog species, which forage on larvae within the bromeliads.

Cantorchilus longirostris on bromeliad (Quesnelia arvensis) leaf

Long-billed marsh wren perches on the tip of bromeliad leaf.  This bird can use its long beak to probe for invertebrates living within the bromeliad tank. Credit: Crasso Paulo Bosco Breviglieri

Crasso Paulo Bosco Breviglieri and his colleagues had previously done research demonstrating how insectivorous birds hanging out near bromeliads inhibited dragonflies from ovipositing (laying eggs) within the bromeliad tank. As these birds were much larger than the animals living within the tanks, Breviglieri and Romero hypothesized that the birds would focus on eating the largest items offered to them by this ecosystem. By removing the largest items (the top predators), birds increase the biomass of the prey of these top predators, including detritivores. Thus bird predation should indirectly increase decomposition rate and nutrient availability.

Breviglieri food web

Effects of birds and frogs on bromeliad trophic cascades. Solid arrows are direct effects and dashed arrows are indirect effects (for example frogs eat top predators, thereby indirectly increasing mesopredators).  Wider arrows are stronger effects.

Trophic cascades, a process in which the effects of consumption within an ecosystem cascade down from higher to lower feeding levels, can be difficult to study. The problem is that one favorite approach is to remove predators (the top trophic level) and see if prey abundance increases while the food of these prey decreases, and so on. This is extremely challenging when top predators are lions or wolves and ecosystem area encompasses thousands of kilometers, but much easier when predators are birds or frogs, and each ecosystem is a tank bromeliad. Simply put a cage over a tank bromeliad and presto!, no birds or frogs can get in.

Dr. Crasso Paulo B. Breviglieri building the cages that isolated the bromeliads

Breviglieri with a caged bromeliad. Credit: Jennifer Tezuka

Breviglieri and Romero collected 30 tank bromeliads from the forest, and meticulously cleaned each plant to remove all organisms and organic matter. They filtered and homogenized the water from the bromeliads, and returned 1 liter of water to each plant so that each plant began the experiment with the same quantity of water and microorganisms. The researchers then added equal numbers of organisms to each bromeliad from all of the trophic levels, ranging from apex predators such as damselflies down to detritivores, such as shredders, which eat dead plant leaves and begin the break down process. They also added 10 leaves to each tank for detritivore consumption and further decomposition.

For their experiment, Breviglieri and Romero had three different treatments, with 10 bromeliads per treatment: (1) caged, with each bromeliad enclosed within a steel mesh that allowed insects through but restricted birds and frogs, (2) open-cage control, with each bromeliad only partially enclosed so predators had free access, (3) uncaged control. They returned these to the field at 40 meter intervals, and allowed 155 days to pass.

Larva of zygoptera on bromeliad (Quesnelia arvensis)leaf

Bromeliad with a damselfly larva (top predator) that for unknown reasons has climbed out of the tank onto a leaf.  A bird flew to a nearby perch, but the alert damselfly dove back down into the tank, earning a 9.6 from the judges. Credit: Crasso Paulo Bosco Breviglieri

After 155 days, Breviglieri and Romero collected all of the bromeliads, and identified, counted and weighed (dry weight) all of the organisms. They discovered that the dry mass of invertebrates was much greater in the caged treatments than either control (Figure A). The abundance of apex predators (damselflies and tabanids) did not increase; but the size of individuals increased dramatically (Figure B). Mesopredators increased in abundance (Figure C), while shredder abundance declined sharply (Figure D). Shredder larvae forage on sediment and are a favorite damselfly food item, so it is not surprising that shredders declined, given the sharp increase in damselfly size, and presumably appetite.


Lower shredder abundance in the caged bromeliads led to a sharp decline in decomposition rates (left graph below). In theory, this should make fewer nutrients available to the bromeliads and reduce bromeliad growth. In contrast to expectations, caged bromeliads actually grew more leaves (right graph below), despite the reduction in decomposition rates. Breviglieri and Romero remind us that the greater mass of larvae were producing a much greater mass of fecal matter and prey carcasses, both of which are very nutrient rich. Also, higher predation rates can cause some insects to mature and leave their tank at a smaller size, consuming fewer nutrients while in the larval form, and leaving more nutrients for each plant to use for its own growth.


Decomposition rate measured as detrital mass lost (left graph), and growth rate measured as new leaves grown by the bromeliads (right graph), for caged, open-caged and uncaged controls.

Clearly, there are many unanswered questions about this trophic cascade. For example, why don’t the number of top predators increase in abundance when birds and frogs are excluded? When I asked him this question, Breviglieri suggested that two processes could explain this finding. First, top predators eat smaller larvae of their own species. Second, female insects can chemically sense the presence of predators in these bromeliads, and refrain from ovipositing in plants hosting large predators.

Perhaps most important, can we extend the conclusions from these small ecosystems to larger ecosystems? In nature there are many analogous ecosystems in which predators have strategies for crossing boundaries and influencing ecosystem processes. For example, many birds dive into lakes searching for fish and invertebrates. Moving in the opposite direction, banded-archerfish spit out water jets to dislodge invertebrates from adjacent vegetation into the water, and crocodiles leave rivers to grab and consume convenient gnus. In these systems, as in bromeliads, predators cross ecosystem borders to feed, and it is important for us to understand if there are any general patterns in how these visitors from the outside affect ecosystem functioning.

note: the paper that describes this research is from the journal Ecology. The reference is Breviglieri, Crasso Paulo Bosco, and Gustavo Q. Romero. 2017. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs. Ecology. doi:10.1002/ecy.1881.  It was published online on June 12, and should appear shortly in print. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

Timely trophic cascades

While many of us appreciate oysters as delectable delights, we may underestimate the environmental benefits they also bring to the table. As filter feeders, they remove vast quantities of organic debris from the water, and as reef builders they protect our shorelines from violent wave action.


Oyster reef. Credit: WFSU, Public Media

Of course, humans are not the only animals to enjoy eating oysters. For example, along portions of the Florida coast dominated by the reef-building oyster Crassostrea virganica, the mud crab, Panopeus herbstii, is a major consumer of juvenile oysters. In some locations, the average abundance of these voracious crabs can exceed 10 adults/m2 of reef. But all is not food and gravy for these crabs, as lurking in nearby burrows are equally voracious crab-eating toadfish, Opsanus tau. When toadfish are detected, the mud crabs will hide within the protective matrix of oyster shells and sediment that form the reef.


A mud crab hiding among a cluster of oysters. Credit: WFSU, Public Media

By consuming mud crabs, toadfish are indirectly protecting oysters from being eaten. Ecologists call this a consumptive effect (CE). But David Kimbro and his colleagues have also shown than toadfish, by their mere presence, can also protect oysters by scaring the crabs into hiding. Since, in this case, they are not consuming the crabs, ecologists call this a non-consumptive effect (NCE). Together, CEs and NCEs should both increase oyster survival. More surviving oysters lead to higher overall feeding by oysters, which lead to more oyster poop, and more organic matter deposited into the sediment below. Ecologists call this type of relationship a trophic cascade, because the effects on one species cascades down through the ecosystem. In this case, increasing toadfish will decrease crabs, thereby increasing oysters and sediment organic matter. Conversely, decreasing toadfish should increase crabs, thereby decreasing oysters and sediment organic matter.


Toadfish/mud crab/oyster/sediment organic matter (SOM) cascade. Dotted arrows are indirect effects

Kimbro and his colleagues wanted to explore this trophic cascade in more detail. They set up an experiment with 24 artificial reefs (made out of natural materials, except for the surrounding fence), which included 35 L of live oysters. They supplied each reef with 0, 2, 4, 6, 8 or 10 live crabs, and provided half of the reefs with a caged toadfish. They then measured oyster survivorship in relation to crab density in the presence or absence of predators.


Setting up an artificial reef. Credit: WFSU, Public Media

The graphs below summarize their findings. The first thing to notice is that mud crabs were bad news for oysters, as survivorship plummeted when mud crabs were abundant. However, early in the experiment (graphs A and B) having a toadfish around helped out considerably. Oysters survived much better in the presence of toadfish (triangles and dotted curve) than they did without toadfish (circles and solid curve). But by the middle of the experiment (Graphs C and D), the toadfish no longer helped. Interestingly, by the end of the experiment (Graph E) the toadfish was once again helping the oyster’s cause, as survivorship was again greater in the presence of toadfish than in its absence. Realize that the difference between the dotted and solid curve is a measure of the NCE, as the toadfish are not eating the crabs (because they are caged). So we can conclude that there was a strong NCE early on, which waned in the middle of the experiment and then returned by the end of the experiment.


A second finding is that the reef grew (expanded) when there were no crabs present, but that even two crabs were enough to reduce reef growth to zero. In addition sediment organic matter was greatest when there were either none or only two crabs present in the reef. Four or more crabs in the reef reduced the deposition of sediment organic matter. These findings were not influenced by the presence or absence of toadfish.

This is a complicated system, but we (and toadfish, crabs and oysters) live in a complicated world. And there are several other complications that I have not even mentioned! We might argue that the crabs may habituate (get accustomed) to these toadfish, so that by the middle of the experiment, the toadfish NCE had worn off. That begs the question of why the NCE returned towards the end of the experiment. Kimbro suggests that at the beginning of the experiment, the novelty of the predator cue probably caused strong NCEs. But by the middle of the experiment, the crabs became hungry and chose to forage regardless of predator cue. Finally, towards the end of the experiment, the crabs, having filled up on juvenile oysters, opted to hide rather than forage when toadfish were present. Whatever the reason, these findings caution us that if we want to understand trophic cascades, we need to consider the dimensions of both space and time.

note: the paper that describes this research is from the journal Ecology. The reference is Kimbro, D. L., Grabowski, J. H., Hughes, A. R., Piehler, M. F., & White, J. W. (2017). Nonconsumptive effects of a predator weaken then rebound over time. Ecology 98(3): 656-667. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.