Stress frequency structures communities

COVID-19 has amplified our experience of stress, but even in a COVID-free world, we share with most other organisms a continuously stressful existence, highlighted by situations affecting our survival (e.g. getting food and not becoming someone else’s food) and our reproductive success.  Today we will discuss organisms that live in a very stressful environment – the subtidal zone off of the Galapagos islands – located just below the line demarcating the furthest extent of low tide.  One serious stress for subtidal organisms is coping with dramatically fluctuating ocean currents.  The speedy surgeonfish uses its powerful pectoral fins and slender, disc-shaped body to minimize drag, permitting feeding in high flow conditions brought about by powerful ocean waves.  In contrast, the broad-bodied torpedo-shaped parrotfish is unable to do so; for it, fast water is too much of a drag.

ALE_3

Yellowtail surgeonfish (Prionurus laticlavius) stand out as voracious herbivores that can feed even in the most wave-swept coastlines of the Galapagos Islands. Credit: Dr. Alejandro Perez-Matus.

Waters near the Galapagos Islands are enriched by upwelling equatorial currents, which provide nutrients to a diverse community of plankton and benthic (attached to the ocean bottom) algae.  These in turn support a high diversity of macroinvertebrates and herbivorous fish that feed on them, including the pencil urchin, Eucidaris galapagensis, a voracious feeder on algae, barnacles and coral. This species wedges itself among rocks and crevices during the day, and emerges to feed at night.  It attaches itself (and moves very slowly) using its tube feet.  Robert Lamb, Franz Smith and Jon Witman hypothesized that given the weak attachment strength of the pencil urchin’s tube feet, it might only be an effective feeder in locations where wave action was minimal.

IMG_0465

Robert Lamb bolts experimental cages to the rock as Eucidaris urchins stand guard at the sheltered side of Caamaño. Credit: Salome Buglass.

To explore how wave action might affect the subtidal community, the researchers set up two research locations at Caamaño and Las Palmas – both off the Galapagos Island of Santa Cruz.

LambFig1

Effect of wave action (exposed – dark bar, sheltered – light bar) on abundance of some of the important members of the subtidal community off of the island of Santa Cruz.

 

At each location, they chose an exposed site with strong wave action and a sheltered site that had much reduced wave action.  Mean flow speed was more than twice as fast at exposed sites than in sheltered sites. As you can see in the figure to your left, site differences in mean flow speed corresponded to differences in the subtidal community. Crustose coralline algae (red algae firmly attached to corals) were more common in sheltered sites (Figure A), while a variety of red and green macroalgae were more common at exposed sites (Figure B).  Surgeonfish (Figure C) and parrotfish (Figure D) were much more abundant in exposed areas, while pencil urchins were much more abundant in sheltered sites (Figure E).

 

 

 

 

 

Lamb and his colleagues wanted to know why these differences exist. They set up a series of exclosures within each of these sites using wire mesh cages to either allow fish, but not urchins (+ fish treatment), allow urchins but not fish (+ urchins), or exclude both groups of herbivores (- all).  They also had a control treatment that allowed all herbivores (+ all).

LambTreatments

In one experiment the researchers created sandwiches made up of the delectable green algae Ulva.  For five days, they ran six replicates of each treatment at exposed and sheltered sites at Caamaño and Las Palmas. Lamb and his colleagues then harvested the sandwiches, weighed them, and calculated the percent remaining of each sandwich.

LambUlvaSandwich

An Ulva sandwich

At exposed locations, urchins (without fish) consumed very little Ulva, while fish (without urchins) consumed about 2/3 of the Ulva (when compared to the –all controls). In contrast, at sheltered locations, urchins took some mighty significant bites from the Ulva sandwiches, while fish also ate substantial Ulva at Caamaño, but not at Las Palmas.

LambFig3

Percent of Ulva biomass remaining after five days of the Ulva sandwich experiment. Error bars are 1 SE.

In a related experiment, the researchers used the same cages to explore how macroalgal communities assemble themselves in the presence or absence of urchin and fish herbiores under different flow rates.  If this was not enough to consider, they also ran these experiments both during the cool season, when nutrient-rich ocean currents lead to high production, and during the warm season when production is usually lower.  Lamb and his colleagues bolted two 13 X 13 cm polycarbonate plates to the bottom of each cage, and after two months measured the abundance and type of algae that colonized each plate.

Several trends emerge.  First, macroalgae colonized much more effectively during the cool season.  Second, urchins profoundly reduced macroalgal colonization at sheltered sites, but had little effect at exposed sites.  In contrast, fish herbivory reduced macroalgal colonization at exposed sites at Caamaño but not Las Palmas, during the warm and cool season.

LambFig4

Effect of herbivores on macroalgal community assembly, as measured by amount of algae colonizing the polycarbonate plates after two weeks.

In addition, the researchers set up video cameras and were able to document herbivory by 17 fish species, with drastically higher herbivory rates at exposed sites.

Lamb and his colleagues conclude that the dominant herbivores switched between urchins in low flow sites and fish in exposed sites. Fish can leave the resource patch when stress (flow rate) is unusually high, and return when flow rate drops, while the slow-moving pencil urchins do not have that option. The researchers argue that in many ecosystems, consumer mobility in relation to the frequency of environmental stress can predict how consumers influence community structure and assembly.  They point out that the coupling of mobility effects with environmental stress is common throughout the natural world.  As examples, many shorebirds feed on marine organisms that become available during low tides, or also between crashing waves.  Large mammals in Africa can migrate long distances to escape drought-stricken areas, while smaller animals cannot undertake such long journeys.  In locally acidic regions of the Mediterranean Sea, many fish species can enter, feed and leave before experiencing toxic effects from the acid water, while slow-moving urchins are excluded from feeding in those habitats. Thus, while extreme environmental stress often decreases consumer activity, there are also times when it doesn’t.  In these cases, we need to understand how particular species will behave and perform in the stressful environment to predict how stress influences community structure and functioning.

note: the paper that describes this research is from the journal Ecology. The reference is Lamb, R. W.,  Smith, F., and  Witman, J. D..  2020.  Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology  101( 1):e02910. 10.1002/ecy.2910. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2020 by the Ecological Society of America. All rights reserved.

Carbon dioxide’s complex personality

Carbon dioxide (CO2) deservedly gets a lot of bad press because it is responsible for much of the global warming Earth is currently experiencing.  Less publicized, but perhaps equally important, CO2 is acidifying oceans, thereby threatening the continued existence of some critical biomes such as coral reefs and kelp forests (acid interferes with the ability of many marine organisms to build their shells).  But carbon dioxide also has a kinder, gentler side, as it is an essential resource for plants, and in some cases higher CO2 levels can increase a plant’s ability to carry on photosynthesis.  Sean Connell and his colleagues explored this complex personality by studying a marine ecosystem that experiences naturally varying levels of CO2. High CO2 levels and acidity exist near CO2-emitting vents at the study site – a volcanic island (Te Puia o Whakaari) off the coast of New Zealand.

White_Island_James Shook [CC BY 2.5 (https-::creativecommons.org:licenses:by:2.5)], from Wikimedia Commons

The volcanic Te Puia o Whakaari off the coast of New Zealand’s north island. Credit: James Shook [CC BY 2.5 (https-//creativecommons.org/licenses/by/2.5)], from Wikimedia Commons.

The major players in this ecosystem are the kelp, Ecklonia radiata, several species of turf-forming algae, and two grazers, the snail, Eatoniella mortoni, and the urchin, Evechinus chloroticus.  The typical vegetation in the region is a mosaic of kelp forest, some scattered small patches of algal turf, and sea urchin barrens – hard rock without significant vegetation, a result of overgrazing by sea urchins.  In contrast, extensive algal mats carpeted the rocks near these vents, and the researchers hypothesized that high CO2 levels caused this shift in dominant vegetation.

IMG_5461

Sean Connell collects data in a habitat dominated by algal turf (and numerous fish). Credit: anonymous backpacker.

Connell and his colleagues chose two vents and two nearby control sites at a depth of 6-8 meters. The CO2 levels and acidification near the vents were approximately equal to the amount projected for the end of the 21stcentury, but there were no differences between vents and controls in temperature, salinity or nutrient concentrations. The researchers estimated photosynthetic rates for kelp and turf algae by measuring the rate of oxygen production. They also estimated snail consumption rates by caging them for 3 days and measuring how much algal turf they removed.  They used an analogous approach to measure sea urchin consumption rates.

Conditions at vents had a major impact on both producers and consumers.  Kelp production decreased slightly, while turf production increased sharply at vents (Figures A and B below).  Urchin density declined (almost to nonexistence) while gastropod density increased markedly at vents (Figures C and D).  Lastly, consumption rates (on a per individual basis) by urchins plummeted, while consumption rates by snails increased sharply at vents (Figures E and F).

ConnellFig3

Comparison of production and consumption at control sites vs. carbon dioxide emitting vents.

These patterns converted the normal mosaic of kelp forest, small algal turf patches and urchin barren into turf-dominated habitats.  Algal turf increased in size and frequency near the vents, while kelp forest shrank into near oblivion.

ConnellFig2

Frequency of patches of turf (light gray bars), urchin barren (medium gray) and kelp (black) in relation to patch size (diameter in meters) at control sites (top graph) and sites near vents (bottom graph).

These results can be pictured visually by the graph below.  Under conditions of present-day pH and CO2 levels, gross algal production is relatively low and urchin consumption is relatively high, which results in negligible net algal turf production (net production = gross production – urchin and gastropod consumption).  High CO2 levels sharply increase gross algal turf production while dramatically decreasing consumption by urchins.  Even though gastropod consumption increases slightly at vents, the overall effect on vents is a dramatic increase of net algal turf production. Consequently, the ecosystem experiences regime shift from kelp to algal turf domination.

ConnellFig1

Summary of effects of CO2 release by vents (bottom) vs Controls (top). Net algal production (red circle) = Gross algal production – urchin and gastropod consumption.  Net algal production in dark green zone is predicted to be turf-dominated (as is found near vents), light green is a mosaic, while white zone represents urchin barrens (low production and high consumption). Error bars are 1 standard error. 

Under current conditions, kelp is the dominant producer over turf algae in the near offshore ecosystem. High consumption by urchins keep the turf algae in check.  But near CO2 emitting vents, high levels of carbon dioxide have a dual effect on this ecosystem, disproportionately increasing turf algae production rate and decreasing urchin abundance and consumption rate.  This allows the competitively subordinate turf algae to replace the competitively dominant kelp, resulting in a dramatically changed ecosystem.  This occurs in the absence of an increase in ocean temperature.  Given that ocean temperature will increase sharply by 2100 (along with CO2 levels), many species interactions are expected to change in the next century, and ecosystem structure and functioning will be very different from what we observe today.

note: the paper that describes this research is from the journal Ecology. The reference is Connell, S. D., Doubleday, Z. A., Foster, N. R., Hamlyn, S. B., Harley, C. D., Helmuth, B. , Kelaher, B. P., Nagelkerken, I. , Rodgers, K. L., Sarà, G. and Russell, B. D. (2018), The duality of ocean acidification as a resource and a stressor. Ecology, 99: 1005-1010. doi:10.1002/ecy.2209 Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.