Invading hippos

Jonathan Shurin was studying declining water quality in Lago de Tota, Colombia’s largest lake, when he learned about a local invasion of the common hippopotamus, Hippopotamus amphibius.  Four hippos were imported to Colombia by the notorious drug lord Pablo Escobar to populate his private zoo.  Following Escobar’s shooting death in 1993, the zoo fell into disrepair and the hippos wandered off free.  The population now numbers between 65-80, and breeding individuals have been seen 150 km from the zoo.


Hippos wallow in a lake framed by cattle egrits. Credit J. Shurin

Common hippos are native to central and southern Africa; as their scientific name implies they divide their existence between land (mostly at night) and water (keeping cool during the day).  These are huge animals, weighing up to 1500 kg and capable of running a surprising 30 kg/hr.  Apparently it is very easy to annoy a hippo.  From an ecosystem standpoint, hippos in their native Africa have been shown to have a strong impact on ecosystems by grazing on land at night and then releasing processed nutrients into lakes during the day.  Their influence is greatest during the dry season when they’re concentrated at high densities.  Jonathan Shurin and his colleagues wanted to know whether hippos were having a discernable effect on lakes and rivers in Colombia.  Given an expectation that the hippo population will continue to grow, this question has important management implications.


A grazing hippo. Credit: J. Shurin

The researchers sampled 14 small lakes at Hacienda Napoles in Antioquia, Columbia during the wet season and the dry season.  All lakes were sampled from shore because entering a lake containing hippos can be hazardous to a researcher’s health.peligrohippo

Two lakes were found to contain hippos, while the other 12 did not (though some had been observed with hippos on other occasions).  The analysis compared the two lakes with hippos to the 12 lakes without hippos for nutrients, conductivity, pH, temperature and chlorohyll-a concentration (a measure of photosynthetic activity).  The researchers sampled for phytoplankton, zooplankton and used dip nets to sample macroinvertebrates.  They found few differences in most categories except for the composition of the phytoplankton community. As you can see below, lakes with hippos had considerably more cyanophytes (photosynthetic bacteria often associated with harmful algal blooms), and fewer chlorophytes and charophytes (types of green algae) than did lakes without hippos.


Mean relative density of different divisions of phytoplankton in the two lakes with hippos (left bar) and the 12 lakes without hippos (right bar).

Shurin and his colleagues also estimated net production of each lake by systematically measuring dissolved oxygen concentration throughout the day. Photosynthetic organisms in highly productive lakes should take up lots of carbon dioxide during the day, and release considerable oxygen into the water.  Thus the difference in oxygen levels during the day (when photosynthesis occurs) vs. night (when there is no photosynthetic activity) would be greatest in highly productive lakes. The researchers discovered from multiple samples that the two lakes with hippos had an average range of 3.6 mg/L in dissolved oxygen levels which was significantly greater than the average range of 2.1 mg/L measured in three of the lakes without hippos (it was not feasible to measure all of the no hippo lakes). Presumably, this difference occurs from high photosynthetic rates during the day in the lakes with hippos.


Time series of dissolved oxygen in the sampled lakes.  Notice how dissolved oxygen levels peak in the late afternoon (hour 12 = noon), but decline overnight without input from photosynthesis.

In addition to comparing the quantity of nutrients, Shurin and his colleagues wanted to know the source of the nutrients.  Stable isotopes are forms of elements (in this case carbon and nitrogen) that differ in number of neutrons.  They are called stable, because they don’t undergo radioactive decay.  Stable isotope analysis measures the ratio of rare isotopes of a particular element in comparison to the more common isotope (for example 13C compared to 12C). Relevant to the hippo study, plants growing on land tend to have a higher (less negative for carbon, more positive for nitrogen) stable isotope ratio of carbon (delta13C) and nitrogen (delta15N) than do plants growing in water.  So if hippos were bringing nutrients into the lakes, the researchers expected the two hippo lakes to have higher stable isotope ratios of carbon and nitrogen.

As you can see from the graph below, on average, the two hippo lakes had higher stable isotope ratios of carbon, but not of nitrogen.  This indicates that hippos are importing carbon into the lake – presumably eating 13C rich plants during the evening, and then pooping out the remains when they return to the water.  However there is no evidence that hippos are importing nitrogen into the lakes.


Stable C and N isotopic ratios for samples collected from lakes with (green) and without (orange) hippo populations. Solid circles are the mean values of multiple samples collected at different times from the same lake, and open circles are the individual observations from each sample.

Shurin and his colleagues acknowledge the difficulty of drawing conclusions on ecosystem impact based on only two lakes with hippos.  On the other hand, finding significant differences with such a small sample is noteworthy, particularly when considering that the hippo invasion may be in its early stages.  If we extrapolate, from four hippos in 1993 to the lower estimate of 65 hippos at the time of the study, and assume exponential growth, we should find 785 hippos by 2040 and over 7000 hippos by 2060.  There are several assumptions with this extrapolation, but if unchecked the hippo population could expand dramatically, impacting ecosystem functioning in many different ways.


Observed (solid circles) and projected (open circles) growth of the hippo population in Antioquia, Columbia, assuming exponential growth.

But should we worry about this?  After all, hippos are amazingly cool, and tourists have begun visiting Hacienda Napoles specifically to see the hippos.  This is an example of a social-ecological mismatch, where the societal value placed on a species may oppose potential negative environmental impact. Conservation ecologists will need to work with the local community to devise a plan that serves the best interests of the ecosystem, and the humans who live there.

note: the paper that describes this research is from the journal Ecology. The reference is Shurin, J. B., Aranguren-Riaño, N., Duque Negro, D., Echeverri Lopez, D., Jones, N. T., Laverde‐R, O., Neu, A., and Pedroza Ramos, A. 2020. Ecosystem effects of the world’s largest invasive animal. Ecology 101(5):e02991. 10.1002/ecy.2991. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2020 by the Ecological Society of America. All rights reserved.

Invasive crayfish hit the self-destruct button

One important feature of a biological invasion is that invaders can change an entire ecosystem in a substantial way.  A possible outcome of this change is that, in theory, an invasive species could inadvertently make an ecosystem less suitable as a habitat for itself.  Does this happen, and if so, under what circumstances?  One reason invasive species are so successful is that they usually can increase in population size very quickly.  Ecologists have discovered that species with the potential to increase very quickly may also have the potential to decline equally rapidly and then increase again, going through repeated boom-bust cycles of population size.  Thus if an invasive species starts to decline, it does not always mean that this decline will continue over time. Consequently, monitoring a biological invasion for only a few years may give a misleading picture of long-term prognosis for the invasive species and the ecosystem.

Eric Larson was able to address these problems when he began his postdoctoral research with David Lodge at the University of Notre Dame in 2014. Lodge (and John Magnuson before him) has studied the rusty crayfish (Faxonius rusticus) invasion in 17 northern Wisconsin lakes since the 1970s, using the same bait (beef liver) and the same traps on the same days each year.


Crysta Gantz prepares to bait a trap with beef liver, which the crayfish love, but she – not so much! Credit: Eric R. Larson.

Three graduate students (the other co-authors of the paper) had continued data collection and done extensive mapping of the lake bottoms.  When Larson joined the research program he had about 40 years of data and 17 well-described lakes.  He knew that rusty crayfish were declining in some lakes and not others, and he and his colleagues were ready to explore whether these declines could be tied in to some environmental variable that the crayfish were influencing in some lakes, but not others.


Allequash Lake. Credit Eric R. Larson

As an avid fisherman (more in my mind than in actuality), I have, on many occasions, caught a nice bass only to have it regurgitate the contents of its stomach, which usually includes bits of crayfish.  As it turns out, predacious fish such as bass love to eat crayfish, and crayfish are more likely to survive in environments that provide hiding places such as rocks or luxurious macroalgae that grow in sand or muck. The problem is that crayfish enjoy dining on macroalgae, so they can do themselves a disservice by eating their shelter from predators, effectively changing their environment so that their invasion is no longer sustainable.  Does this actually happen?


Two rusty crayfish discuss the issues of the day. Credit: Eric R. Larson.

Larson and his colleagues continued collecting data on 17 lakes, and used their long-term data set to evaluate whether rusty crayfish populations were not declining (steady or increasing), declining or occupying an ambiguous gray zone where there was no clear trend in how the population was changing. The analysis showed that three lakes were not declining since the rusty crayfish invasion, eight lakes had declined substantially and six lakes were ambiguous.


The researchers turned their attention to the lake-bottom substrate.  Were rusty crayfish more successful in rocky bottom lakes that gave them continuous predator protection?  Their analysis indicated that the three lakes where the invasion was going strong had the rockiest substrate, while the eight lakes experiencing population declines after the rust crayfish invasion were significantly less rocky.


Proportion rocky substrate in lakes whose rusty crayfish populations are in decline (red), have an ambiguous trend (black) or are not in decline (blue). The horizontal line within each box is the median value, box bottom and top are 25th and 75th percentile, and whiskers are the 10th and 90th percentile. Non-overlapping letters above the bars (a and b) indicate significant differences between the groups.

The researchers conclude that in the absence of rocky substrate, the rusty crayfish is eating the aquatic macrophytes that grow from the sandy lake bottom, thereby exposing itself to predators.  Larson and his colleagues recommend simultaneous surveys of crayfish populations and density of aquatic macrophytes to see whether lakes may oscillate between states dominated by one or the other.


Captured crayfish. Photo Eric R. Larson

Researchers want to know how commonly invasive species modify habitat in a self-destructive way.  A literature review of invasive species declines failed to find much evidence, but there are not enough long-term data sets to get a sense of how frequently this occurs. The problem is that researchers need to monitor the invasive species population and the relevant habitat variables for an extended time period.  The jury is still out on this question and only time (and careful data collection) will tell.

note: the paper that describes this research is from the journal Ecology. The reference is Larson, E. R.,  Kreps, T. A.,  Peters, B.,  Peters, J. A., and  Lodge, D. M.  2019.  Habitat explains patterns of population decline for an invasive crayfish. Ecology  100( 5):e02659. 10.1002/ecy.2659. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2019 by the Ecological Society of America. All rights reserved.

Light levels limit lake phytoplankton response to fertilization

One might naively think that because we humans are land-dwelling creatures, our impact on aquatic ecosystems might be relatively minor. Unfortunately, this assumption is incorrect, as human activities are changing aquatic environments in profound ways that influence how aquatic species survive and interact. Global warming is increasing lake and river temperatures, uncontrolled development is causing some streams to run dry and others to flood, and agricultural practices are adding nutrients to many lakes and streams. Because these human impacts occur simultaneously, it is difficult to evaluate how each factor contributes to the observed changes in species relations.

In northern Sweden, lakes vary naturally in the amount of dissolved organic carbon (DOC) they contain. DOC comes from runoff of decaying plant matter, so lakes surrounded by substantial vegetation, or that experience a great deal of water input (runoff) from the surrounding area, would have higher DOC than other lakes. DOC is potentially very important to lakes, because DOC tends to discolor a lake, which reduces light penetration and slows down photosynthesis. On the positive side, carbon may bond to other molecules such as phosphorus and nitrogen, which are important nutrients that may be in short supply in these relatively infertile lakes.   Anne Deininger and her colleagues focused their studies on two factors: DOC and nitrogen. Most lakes have too much nitrogen, a result of excessive use of nitrogen fertilizers that run off into lakes, so these relatively low-nitrogen lakes provided the researchers with a unique opportunity to see how these two factors, DOC and nitrogen, interacted in a natural ecosystem.

Screen Shot 2017-06-14 at 11.35.22 AM

Low DOC control lake. Credit: M. Klaus

The researchers selected six lakes that varied naturally in DOC levels: two low (~7 mg DOC/liter), two medium (~11 mg DOC/liter), and two high (~20 mg DOC/liter). In 2011 they measured everything possible about each lake: abundance of all of the life forms, DOC, temperature, light levels, nutrients and photosynthetic rates. In 2012 and 2013, they supplemented one of each pair of lakes with nitrogen compounds every one to two weeks. The added nitrogen was equivalent to the higher nitrogen inputs that are experienced by lakes in southern Sweden. And, as you might expect, the researchers continued measuring all factors of interest in both the experimental (fertilized) and control (unfertilized) lakes throughout the year – at least until the lakes froze over.


Anne Deininger (in orange) and Sonja Prideaux collect samples from a lake. Credit: M. Deininger.

Deininger and her colleagues were most interested in differences in the abundance of phytoplankton – small free-floating photosynthetic organisms, because these are the primary producers – the organisms that produce the chemical energy (via photosynthesis) that enters food webs. There are many different types or groups of these phytoplankton; some are flagellated, with hair-like processes that allow them to navigate in the water column. Some are exclusively autotrophs, producing their own energy from photosynthesis, some are primarily hetrotrophic, eating other organisms or the remains of dead organisms, while others are mixotrophs, using both strategies to produce energy. Cyanobacteria are photosynthetic bacteria, while picophytoplankton are phytoplankton of unusually small size.

Screen Shot 2017-06-14 at 11.36.12 AM

Flagellated phytoplankton (Cryptomonas). Illustration by Anne Deininger.

Many important findings are summarized in the graph below. “B” represents the year before fertilization (2011), while “A1” is 2012 (after fertilization – 1st year) and “A2” is 2013 (after fertilization – 2nd year). Remember only the N-lakes were fertilized; the control lakes were simply monitored all three years. One finding is that in 2011, the high DOC lakes had the lowest phytoplankton abundance.  A second is that the low and medium DOC lakes had both flagellated and non-flagellated phytoplankton, while the high DOC lakes were dominated by flagellated phytoplankton.

Moving to the years after fertilization (A1 and A2), you can see that nitrogen fertilization increased phytoplankton abundance, but more so for the low-DOC lake. However, fertilization had little impact on the types of phytoplankton found in each lake; rather it simply increased the abundance of already existing groups.


Mean biomass of major phytoplankton groups in relation to DOC.  Recall that B refers to 2011 (the year before fertilization), while A1 and A2 refer to the two years after fertilization (2012, 2013).

The data can be organized so we can get a better view of what is happening quantitatively. Fertilization increases phytoplankton biomass, but much more for lakes with low DOC levels. In addition DOC appears to decrease phytoplankton abundance.


Deininger and her colleagues conclude that in these northern lakes, phytoplankton production is nutrient-limited at low DOC levels, but becomes limited by light availability in more murky waters. So adding nitrogen increases phytoplankton abundance to a greater extent in low DOC lakes. High DOC lakes have more flagellated autotrophs, as these species can swim to the top of the water column where there is more light for photosynthesis. As needed, flagellated phytoplankton can move lower in the water column where nutrients are more abundant.

The researchers emphasize that the nitrogen experiments were only conducted for two years. They don’t know if, for example, the types of species would change if fertilization continued for more than two years. They also don’t know if after 2013, the communities reverted to their pre-fertilization state, or if biomasses remained higher when nitrogen fertilization stopped. These types of questions are important to pursue because we humans are making drastic changes to most of our aquatic systems in a very uncontrolled manner. We need to understand the effects of these changes to the aquatic environment, and also how we can reverse the effects should they prove to be highly detrimental.

note: the paper that describes this research is from the journal Ecology. The reference is Deininger, A., Faithfull, C. L., & Bergström, A. K. (2017). Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology98(4), 982-994. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.