Hot invaders thwart endemic New Zealanders

Tongariro National Park in New Zealand’s North Island is changing in many ways.  Over the past 50 years, the park, which has three large volcanoes, has increased in temperature at about three times the global average (about 1.5 deg. C) and is also receiving reduced annual rainfall. The park hosts a large number of endemic plants – species that are native to that region and found nowhere else.


Tongariro National Park in New Zealand.  The plastic sheets in the foreground are open top enclosures used to experimentally raise air and soil temperatures. Credit: Justyna Giejsztowt.

Monoao (Dracophyllum subulatum), is an endemic shrub that thrives in low-lying areas between the volcanoes.  Ecologically it is a facilitator, in that its growth form protects a variety of native species from heavy frosts, thereby promoting high species diversity within the plant communities.


The native monoao (Dracophyllum subulatum). Credit: Justyna Giejsztowt.

In addition to the threat of climate change, portions of Tongariro National Park are also being invaded by common heather (Calluna vulgaris), which has already caused a decline in many native and endemic plant species, and their associated insect communities.  Justyna Giejsztowt had worked previously as a technician for a project that investigated how climate change affected plant communities.  She noticed that the invasive heather had a stronger phenological response to warming than did the native community, flowering earlier and reaching peak floral density at an earlier date. Watching the countryside turn pink from the invasive flowers during that season, she wondered whether the pollinator community might be changing as well, which could affect the reproductive success of the surrounding native vegetation.  So she and her colleagues decided to do some experiments.


The invasive heather, Calluna vulgaris. Credit: Justyna Giejsztowt.

Beginning in 2014, the researchers used hexagonal open-topped chambers to increase air and soil temperatures in experimental plots, while also maintaining unmanipulated control plots (you can see the plastic chambers in the top photo of Tongariro National Park). The researchers measured flowering dates for monoao and heather in each plot (and 11 other less abundant species as well), and estimated the number of flowers in each plot on a regular basis.


Daily mean temperatures (°C) over the 2015/2016 austral summer in experimentally warmed (red) and ambient temperature (blue) plots.

The researchers expected that experimental warming would cause more overlap between the time period when monoao and heather were both in flower.  This is exactly what they found.  Heather reached a high level of flowering much earlier in the year under experimental warming, increasing the percentage of flowering overlap from 2.79% (top graph below) to 11.27% (bottom graph).


Floral density of Calluna vulgaris (heather – dashed line) and Dracophyllum subulatum (monoao – solid line) under ambient (top graph) and experimentally warmed (bottom graph) temperature regimes. Shaded regions denote flowering overlap of monoao with high densities of heather.

This increase in overlap would increase the number of flowers open at a particular time, which might increase competition for pollinators leading to reduced reproductive success. On the other hand, increase in overlap could make a strong visual or olfactory impression on pollinators, drawing them into the area and thereby increasing plant reproductive success.  Or both forces could be important and cancel each other out.

Giejsztowt and her colleagues set up a second experiment to explore how the ratio of native monoao to invasive heather in a patch, and also the total number of flowers of either type within the patch, influenced monoao’s reproductive success.  They intentionally chose patches that had either (1) high monoao flower numbers and high heather flower numbers, (2) high monoao, low heather, (3) low monoao, high heather, or (4) low monoao, low heather.  The researchers chose nine focal plants within each plot, and from these plants they set up four transects running north, east, south and west. Each transect was 25 meters long and 40 cm wide.  The researchers estimated flower abundance in each transect.  As their measure of monoao reproductive success, they collected seeds produced by each focal monoao plant, dried them and then weighed them.

Giejsztowt and her colleagues found that neither the ratio of native to invasive plants, nor total floral density had any direct effect on monoao reproductive success.  However, the interaction of these two factors had a strong effect.  Seed masses of focal monoao plants were heaviest in patches with a high ratio of native to invasive plants, but only if the patches had intermediate or high overall floral density.  In contrast, monoao in patches composed of mostly invasive heather had consistently low seed masses, regardless of overall flower density in the patch.


Monoao seed mass (g) adjusted for the effect of plant height, relative to total floral density in the landscape. Colors denote native monoao (green) or invasive heather (black) dominance (making up more than 50% of the flowers). 

The researchers were not surprised to find that heather responded more strongly to increased temperature than did monoao, as several studies have shown that invasive species tend to have flexible phenology in response to changing environmental conditions. By shifting its peak flowering earlier in response to warmer temperature, heather increased its flowering overlap with monoao, which could, and did, increase competitive effects on monoao reproductive success.  When there were numerous flowers in a patch, but monoao was rarer than heather, monoao had relatively low reproductive success.  In contrast, if monoao was more common than heather, it achieved much greater reproductive success.

Why does this happen?  The researchers suggest that at high floral densities, heather may outcompete monoao for pollinators.  The mechanism for this competitive effect is unknown; invasive species have been shown to influence pollinator behavior and the numbers and types of pollinator within the community.  Because pollinators are declining globally, it is critical to understand how climate change and invasive species can interact to reduce pollination services to native plants within ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Giejsztowt, J.,  Classen, A. T., and  Deslippe, J. R..  2020.  Climate change and invasion may synergistically affect native plant reproduction. Ecology  101( 1):e02913. 10.1002/ecy.2913. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2020 by the Ecological Society of America. All rights reserved.

Beautiful buds beset bumblebees with bad bugs

Sexual liaisons can be difficult to achieve without some type of purposeful motion.  Flowering plants, which are rooted to the ground, are particularly challenged to bring the male close enough to the female to have sex.  One awesome adaptation is pollen, technically the male gametophyte –  or gamete (sperm)-generating plant. These tiny males get to females either by floating through the air, or by being transferred by animal pollinators such as bees. Plants can lure bees to their flowers by producing nectar – a sugar rich fluid – which bees lap up and use as a carbohydrate source.  While nectaring, bees also collect pollen, either intentionally or inadvertently, which provides them with essential proteins. When bees travel to the next flower, they may inadvertently drop some of their pollen load near the female gametophyte – in this case a tiny egg-generating plant (though tiny, the female gametophyte is considerably larger than is the male gametophyte).  We call this process of “tiny boy meets tiny girl” pollination. Once the two gametophytes meet, the pollen produces one or more sperm, which it uses to fertilize an egg within the female gametophyte.  There is more to it, but this will hopefully clarify the difference between pollination and fertilization.


Bumblebee forages on beebalm, Monarda didyma. Credit: Jonathan Giacomini.

All of this business takes place within the friendly confines of the flower.  The same flower may be visited by many different bees of many different species. While feeding, bees carry on other bodily functions, including defecation.  They are not careful about where they defecate; consequently a bee’s breakfast might also include feces from a previous bee visitor. Bumblebee (Bombus impatiens) feces carries many disease organisms, including the gut parasite Crithidia bombi, which can reduce learning, decrease colony reproduction and impair a queen’s ability to found new colonies. Because pollinators are so critical in ecosystems, Lynn Adler and her colleagues wondered whether certain types of flowers were better vectors for harboring and transmitting Crithidia bombi to other bumblebees.


Bumblebee forages on the snapdragon, Antirrhinum majus. Credit: Jonathan Giacomini.

The researchers chose 14 different flowering plant species, allowing uninfected bumblebees to forage on inflorescences (clusters of flowers) inoculated with a measured amount of Crithidia bombi parasites.  The bees were reared for seven days after exposure, and then were assessed for whether they had picked up the infection from their foraging experience, and if so, how intense the infection was. The researchers dissected each tested bee and counted the number of Crithidia cells within the gut.


Researcher conducts foraging trial with Lobelia siphilitica inflorescence. Credit: Jonathan Giacomini.

Adler and her colleagues discovered that some plant species caused a much higher pathogen count (mean number of infected cells in the bee gut) than did other plant species.  For example bees that foraged on Asclepias incarnata (ASC) had four times as many pathogens, on average, than did bees that foraged on Digitalis purpurea (DIG) (top graph below). Bees foraging on Asclepias were much more likely to get infected (had greater susceptibility) than bees that foraged on several other species, most notably Linaria vulgaris (LIN) and Eupatorium perfoliatum (EUP) (middle graph). Lastly, if we limit our consideration to infected bees, the mean intensity of the infection was much greater for bees foraging on some species, such as Asclepias and Monarda didyma (MON) than on others, such as Digitalis and Antirrhinum majus (ANT) (bottom graph).


(Top graph) Mean number of Crithidia (2 microliter gut sample) hosted by bees after foraging on one of 14 different flowering plant species. This graph includes both infected and uninfected bees. (Middle graph) Susceptibility – the proportion of bees infected – after foraging trials on different plant species. (Bottom graph) Intensity of infection – Mean number of Crithidia for infected bees only. The capital letters below the graph are the first three letters of the plant genus. Numbers in bars are sample size.  Error bars indicate 1 standard error.

It would be impossible to repeat this experiment on the 369,000 known species of flowering plants (with many more still to be identified).  So Adler and her colleagues really wanted to know whether there were some flower characteristics or traits associated with plant species that served as the best vectors of disease.  The researchers measured and counted variables associated with the flowers, such as the size and shape of the corolla, the number of open flowers and the number of reproductive structures (flowers, flower buds and fruits) per inflorescence.


Flower traits measured by Adler and colleagues (example for blue lobelia, Lobelia siphilitica). CL is corolla length. CW is corolla width. PL is petal length. PW is petal width. Credit: Melissa Ha.

The researchers also wanted to know whether any variables associated with the bees, such as bee size and bee behavior, would predict how likely it was that a bee would get infected.  Surprisingly, the number of reproductive structures per inflorescence stood out as the most important variable. In addition, smaller bees were somewhat more likely to get infected than larger bees, and bees that foraged for a longer time period were more prone to infection.


Mean susceptibility of bees to Crithidia infection after foraging on 14 different flowering plant species, in relation to the number of reproductive structures (flowers, buds and fruits) per inflorescence.

These findings are both surprising and exciting. Adler and her colleagues were surprised to find such big differences in the ability of plant species to transmit disease.  In addition, they were puzzled about the importance of number of reproductive structures per inflorescence.  At this point, they don’t have a favorite hypothesis for its overriding importance, speculating that some unmeasured aspect of floral architecture influencing disease transmission might be related to the number of reproductive structures per inflorescence.


Bumblebee forages on Penstemon digitalis. In addition to the open flowers, note the large number of unopened buds.  Each of these counted as a reproductive structure for the graph above. Credit: Jonathan Giacomini.

The world is losing pollinators at a rapid rate, and there are concerns that if present trends continue, there may not be enough pollinators to pollinate flowers of some of our most important food crops. Disease is implicated in many of these declines, so it behooves us to understand how plants can serve as vectors of diseases that affect pollinators. Identifying floral traits that influence disease transmission could guide the creation of pollinator-friendly habitats within plant communities, and help to maintain diverse pollinator communities within the world’s ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Adler, L. S., Michaud, K. M., Ellner, S. P., McArt, S. H., Stevenson, P. C. and Irwin, R. E. (2018), Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 99: 2535-2545. doi:10.1002/ecy.2503. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.