Meandering meerkats

Dispersal – the movement of individuals to a new location – is a complex process that ecologists divide into three stages: emigration (leaving the group), transience through an unfamiliar landscape, and settlement in a suitable habitat. Dispersal is fraught with danger, as dispersers usually have a higher chance of starving, of getting eaten by predators, and may suffer a low reproductive rate.  So why move?

The problem is that there are major issues with not moving.  First, if nobody disperses, population densities could increase alarmingly, putting strains on resources and increasing the incidence of disease transmission.  Second, if nobody disperses, close relatives would tend to live near each other.  If these relatives mate, there would be a high probability of bad combinations of genes being expressed, leading to developmental abnormalities or high offspring mortality (geneticists call this inbreeding depression). In social species, such as meerkats, Suricata suricatta, the issues are even more complex, as dispersal could break up social groups that work well together to detect predators or find resources.  Nino Maag and his colleagues explored what factors influence meerkat dispersal decisions, their survival and reproduction, and how those factors affected overall population dynamics in the Kuruman River Reserve in South Africa.

5_Arpat_Ozgul

A group of vigilant meerkats. Credit: Arpat Azgul

Meerkats live in groups of 2-50 individuals, with a dominant pair that monopolizes reproduction.  While pregnant, the dominant female usually evicts some subordinate females from the group; this coalition of evictees will either remain apart from the group (but within the confines of the territory) and eventually be allowed back in, or else emigrate to a new territory. By attaching radio collars to subordinate females, the researchers were able to follow emigrants to determine their fates.

3_Gabriele_Cozzi

Nino Maag collects data in the Kalahari Desert while a meerkat, wearing a radio collar, strolls by. Credit: Gabriele Cozzi.

How does population density affect emigration rates of evicted females?  You might think that meerkats would be most likely to emigrate at high population density, as a way of avoiding resource competition.  As it turns out the story is more complicated.  First, individual females (solid lines in graph below) are more likely to remain with the group (not emigrate) than are groups of two or more females (dashed lines). Second, emigration rates were highest at low population density, intermediate at high population density and lowest at intermediate population density. This nonlinear effect can be explained by low benefits of remaining in a very small group, so evictees are more likely to emigrate.  But as population density (and group size) increase, then the meerkats enjoy higher success as a result of cooperation between individuals  (in particular, detecting and avoiding predators).  But when population densities get too high, there are not enough resources to go around, and evictees are more likely to emigrate.

MaagFig2A

Proportion of evicted female meerkats that had not yet emigrated in relation to time since eviction at low (red), medium (light blue) and high (dark blue) population density.  Solid lines represent individual females, while dashed lines are coalitions of two or more females.

In addition to the density effects we just discussed, association with unrelated males from other groups early after eviction increased the probability that females would emigrate – presumably this increased the probability females would quickly create offspring in their new territory. Females also dispersed longer distances if unrelated males did not meet up with them, possibly to avoid inbreeding with closely-related males from neighboring groups.

Coalitions were more likely to return to the group if females were not pregnant – in fact 62% of pregnant evictees aborted their litters before being allowed back into the group.  Of the ones that did not abort before returning, only 42% of their litters survived to the first month.

The period of transience, when emigrators are seeking new territories can be prolonged and dangerous.  The mean dispersal distance was 2.24 km, and averaged about 46 days.  Larger coalitions with males present tended to disperse the shortest distances (left graph below). Dispersers took longest to settle at high population density – perhaps there were fewer available territories under those conditions (right graph below).

MaagFig4

A. Effect of coalition size and presence of unrelated males on dispersal distance. B. Effect of population density on transience time (interval between emigration and settling).

Large coalitions settled more quickly than did small coalitions, particularly if accompanied by unrelated males.  Once settled, females successfully carried through 89% of their pregnancies (compare that to the 62% abortion rate of females that returned to their original group).  These females had a litter survival rate (to the first month) of 65%.

Social and non-social species are influenced by population density in different ways.  The situation is relatively simple for non-social species; as population size increases, competition between individuals increases, so dispersal is more likely.  However, even for non-social species, we might expect dispersal at very low population levels, if there are no mates available. For social species such as meerkats, the situation is more complex.  Cooperation enhances survival and reproduction, so it is better to be in a larger group (with more cooperators). At the same time, if the group is too large, then resource competition starts being an increasingly disruptive factor. As ecologists collect more dispersal data from other social species, they will be able to test the hypothesis that population density in many species influences dispersal in a non-linear way.

note: the paper that describes this research is from the journal Ecology. The reference is Maag, N. , Cozzi, G. , Clutton‐Brock, T. and Ozgul, A. (2018), Density‐dependent dispersal strategies in a cooperative breeder. Ecology, 99: 1932-1941. doi:10.1002/ecy.2433. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Homing in on the micro range

I’ve always been fascinated by geography. As a child, I memorized the heights of mountains, the populations of cities, and the areas encompassed by various states and countries. I can still recite from memory many of these numbers – at least based on the 1960 Rand McNally World Atlas. Part of my fondness for geography is no doubt based on my brain’s ability to recall numbers but very little else.

Most geographic ecologists are fond of numbers, exploring numerical questions such as how many organisms or species are there in a given area, or how large an area does a particular species occupy? They then look for factors that influence the distribution and abundance of species or groups of species. Given that biologists estimate there may be up to 100 million species, geographic ecologists have their work cut out for them.

As it turns out, most geographic ecologists have worked on plants, animals or fungi, while relatively few have worked on bacteria and archaeans (a very diverse group of microorganisms that is ancestral to eukaryotes).

bacteria1

Two petri plates with pigmented Actinobacteria. Credit: Mallory Choudoir.

Until recently, bacteria and archaeans were challenging subjects because they were so small and difficult to tell apart. But now, molecular/microbial biology techniques allow us to distinguish between closely related bacteria based on the sequence of bases (adenine, cytosine, guanine, and uracil) in their ribosomal RNA. Bacteria which are identical in more than 97% of their base sequence are described as being in the same phylotype, which is roughly analogous to being in the same species.

As a postdoctoral researcher working in Noah Fierer’s laboratory with several other researchers, Mallory Choudoir wanted to understand the geographic ecology of microorganisms. To do so, they and their collaborators collected dust samples from the trim above an exterior door at 1065 locations across the United States (USA).

bacteria2

Dr. Val McKenzie collects a dust sample from the top of a door sill. Credit: Dr. Noah Fierer.

The researchers sequenced the ribosomal RNA from each sample to determine the bacterial and archaeal diversity at each location. Overall they identified 74,134 gene sequence phyloypes in these samples – that took some work.

On average, each phylotype was found at 70 sites across the USA, but there was enormous variation. By mapping the phylotypes at each of the 1065 locations, the researchers were able to estimate the range size of each phylotyope. They discovered a highly skewed distribution of range sizes, with most phylotypes having relatively small ranges, while only a very few had large ranges (see the graph below). As it turns out, we observe this pattern when analyzing range sizes of plant and animal species as well.

Choudoir1C

Mean geographic range (Area of occupancy) for each phylotype in the study.  The y-axis (Density) indicates the probability that a given phylotype will occupy a range of a particular size (if you draw a straight line down from the peak to the x-axis, you will note that most phylotypes had an AOO of less than 3000 km2

Taxonomists use the term phylum (plural phyla) to indicate a broad grouping of similar organisms. Just to give you a feel for how broad a phylum is, humans and fish belong to the same phylum. Some microbial phyla had much larger geographic ranges than others. Interestingly, it was not always the case that the phylum with the greatest phylotype diversity had the largest range. For example, phylum Chrenarchaeota had the greatest median geographic range (see the graph below), but ranked only 19 (out of 50 phyla) in number of phylotypes (remember that a phylotype is kind of like a species in this study).

Choudoir3

Box plots showing range size distribution for individual phyla. Middle black line within each box is the median value; box edges are the 25th and 75th percentile values (1st and 3rd quartiles).  Points are outlier phylotypes. Notice that the y-axis is logarithmic.

With this background, Choudoir and her colleagues were prepared to investigate whether there were any characteristics that might influence how large a range would be occupied by a particular phylotype. We could imagine, for example, that a phylotype able to withstand different types of environments would have a greater geographic range than a phylotype that was limited to living in thermal pools. Similarly, a phylotype that dispersed very effectively might have a greater geographic range than a poor disperser.

The researchers expected that aerobic microorganisms (that use oxygen for their metabolism) would have larger geographic ranges than nonaerobic microorganisms, which are actually poisoned by oxygen. The data below support this prediction quite nicely.

Choudoir4a

Geographic range size in relation to oxygen tolerance.  In this graph, and the graphs below, the points have been jittered to the right and left of their bar for ease of viewing (otherwise even more of the points would be on top of each other).

Some bacterial species form spores that protect them against unfavorable environmental conditions. The researchers expected that spore-forming bacteria would have larger geographic ranges than non-spore-forming bacteria.

Choudoir4BC

Geographic range in relation to spore formation (left graph) and pigmentation (right graph).

Choudoir and her colleagues were surprised to discover exactly the opposite; the spore forming bacteria had, on average, slightly smaller geographic ranges. Choudoir and her colleagues also expected that phylotypes that are protected from harsh UV radiation by pigmentation would have larger geographic ranges than unpigmented phylotypes – this time the data confirmed their expectations.

The researchers identified several other factors associated with range size. For example, bacteria with more guanine and cytosine in their DNA or RNA tend to have larger geographic ranges. Some previous studies have shown that a higher proportion of guanine and cytosine is associated with greater thermal tolerance, which should translate to a greater geographic range. Choudoir and her colleagues also discovered that microorganisms with larger genomes (longer DNA or RNA sequences) also had larger ranges. They reason that larger genomes (thus more genes) should correspond to greater physiological versatility and the ability to survive variable environments.

This study opens up the door to further studies of microbial geographic ecology. Some patterns were expected, while others were surprising and beg for more research. Many of these microorganisms are important medically, ecologically or agriculturally, so there are very good reasons to figure out why they live where they do, and how they get from one place to another.

note: the paper that describes this research is from the journal Ecology. The reference is Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R. and Fierer, N. (2018), Variation in range size and dispersal capabilities of microbial taxa. Ecology, 99: 322–334. doi:10.1002/ecy.2094. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.