Mangroves partner with rats in China

Many of us have seen firsthand the havoc that invasive plants can wreak on ecosystems.  We are accustomed to think of native plants as unable to defend themselves, much like a skinny little kid surrounded by a group of playground bullies. ‘Not so fast’ says Yihui Zhang.  As it turns out, many native plants can defend themselves against invasions, and they do so with the help of unlikely allies.

In southern China, mangrove marshes are being invaded by the salt marsh cordgrass, Spartina alterniflora, which is native to the eastern USA coastline. Cordgrass seeds can float into light gaps among the mangroves, and then germinate and choke out mangrove seedlings.  However, intact mangrove forests can resist cordgrass invasion.  Zhang and his colleagues wanted to know how they resist.

mangrove-Spartina ecotone

Cordgrass (pale green) meets mangrove (bright green) as viewed from space. Credit: Yihui Zhang.

Cordgrass was introduced into China in 1979 to reduce coastal erosion.  It proved up to the task, quickly transforming mudflats into dense cordgrass stands, and choking out much of the native plant community.  Dense mangrove forests grow near river channels that enter the ocean, and are considerably taller than their cordgrass competitors.  The last player in this interaction is a native rat, Rattus losea, which often nests on mangrove canopies above the high tide level. At the research site (Yunxiao), many rat nests were built on mangroves, using cordgrass leaves and stems as the building material.

zhangnest.png

Rat nest constructed from cordgrass shoots rests upon a mangrove tree.  Credit Yihui Zhang.

Zhang and his colleagues suspected that cordgrass invasion into the mangrove forest was prevented by both competition from mangroves and herbivory by rats on cordgrass.

Baby rat in the nest

Baby rats in their nest. Credit Yihui Zhang.

 

To test this hypothesis, they built cages to exclude rats from three different habitats: open mudflats (primarily pure stands of cordgrass), the forest edge, and the mangrove forest understory, (with almost no cordgrass). They set up control plots that also had cages, but that still allowed rats to enter.

zhangregenshoot

Arrow points to resprouting cordgrass. Credit Yihui Zhang.

The researchers planted 6 cordgrass ramets (genetically identical pieces of live plant) in each plot and then monitored rodent grazing, resprouting of original shoots following grazing, and shoot survival over the next 70 days.

They discovered that the cages worked; no rats grazed inside the cages.  But in the control plots, grazing was highest in the forest understory and lowest in the mudflats (Top figure below).  Most important, both habitat type and exposure to grazing influenced cordgrass survival.  In the understory, rodent grazing was very important; only one ramet survived in the control plots, while 46.7% of ramets survived if rats were excluded.  In the other two habitats, grazing did not affect ramet survival, which was very high with or without grazing (Middle figure). Rodent grazing effectively eliminated resprouting of ramets in the understory, but not in the other two habitats (Bottom figure).

Zhangfig2

Impact of rat grazing on cordgrass in the field study in three different habitats.  Top figure is % of stems grazed, middle figure is transplant survival, and bottom figure is resprouting after grazing (there was no grazing in the rodent exclusion plots). Error bars are 1 standard error. Different letters above bars indicate significant differences between treatments.

The researchers suspected that low light levels in the understory were preventing cordgrass from resprouting after rat grazing. This was most easily tested in the greenhouse, where light conditions could be effectively controlled.  High light was 80% the intensity of outdoor sunlight, medium light was 33% (about what strikes the forest edge) and low light was 10% the intensity of outdoor sunlight (similar to mangrove understory light).  Rat grazing was simulated by cutting semi-circles on the stembase, pealing back the leaf sheath, and digging out the leaf tissue. Cordgrass ramets were planted in large pots, exposed to different light and grazing treatments, and monitored for survival, growth and resprouting following grazing.

Greenhouse setup

Cordgrass growing in greenhouse under different light treatments. Credit: Yihui Zhang.

Zhang and his colleagues found that simulated grazing sharply reduced cordgrass survival from 85% to 7% at low light intensity, but had no impact on survival at medium or high light intensities.  Cordgrass did not resprout after simulated grazing at low light intensity, in contrast to approximately 50% resprouting at medium and high light intensity.

ZhangFig4

Survival (top) and resprouting (bottom) of cordgrass following simulated grazing in the greenhouse experiment.

The researchers conclude that grazing by rats and shading by mangroves are two critical factors that make mangroves resistant to cordgrass invasion. Rats tend to build their nests near the mangrove forest edge, so it is not clear how far into the forest the rat effect extends. Rats do prefer to forage in the understory (rather than right along the edge), presumably because the understory helps to protect them from predators.  In essence, mangroves compete directly with cordgrass by shading them out, and also indirectly by attracting cordgrass-eating rats. Conservation biologists need to be aware of both direct and indirect effects when designing management programs for protecting endangered ecosystems such as mangrove forests.

note: the paper that describes this research is from the journal Ecology. The reference is Zhang, Y. , Meng, H. , Wang, Y. and He, Q. (2018), Herbivory enhances the resistance of mangrove forest to cordgrass invasion. Ecology. Accepted Author Manuscript. doi:10.1002/ecy.2233. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Plant communities bank against drought

Many plants shed their young embryos (seeds) into the soil where they may accumulate in a dormant (non-growth) state over years before germinating (resuming growth and development). Ecologists describe this collection of seeds as a seed bank.  Marina LaForgia describes how scientists were able to germinate and grow to maturity some 32,000 year old Silene stenophylla seeds that was stashed, probably by an ancient squirrel, in the permafrost! With increased climatic variation predicted by most climate models, she wanted to know how environmental variability might affect germination of particular groups of species within a community.  In addition, she and her colleagues recognized that most ecological studies investigate community responses to disturbances by looking at the aboveground species.  It stands to reason that we should consider the below-surface seed bank as a window to how a community might respond in the future.

LaForgiaSeedlings

Some seedlings coming up from the seed bank. Credit:Marina LaForgia.

Seed banks can be viewed as a bet-hedging strategy that spreads out germination over several (or many) years to reduce the probability of catastrophic population decline in response to one severe disturbance, such as drought, flood or fire. In some California annual grassland communities, species diversity is dominated by annual forbs – nonwoody flowering plants that are not grasses. Many forbs produce seeds that can lie dormant in the seed banks for several years. Though these forbs are the most diverse group, there are also about 15 species of exotic annual grasses that dominate the landscape in abundance and cover. These grasses dominate because they produce up to 60,000 seeds per m2, they grow very quickly, and they build up a layer of thatch that suppresses native forbs. However, seeds from these grasses cannot lie dormant in the seed bank for very long.

 

laforgiafield2.png

Area of field site dominated by Delphinium (purple flower) and Lasthenia (yellow flower).  Looking closely you can also see some tall grasses rising. Credit Marina LaForgia.

How is drought affecting these two major components of the plant community? LaForgia and her colleagues answered this question by collecting seeds from a northern California grassland at the University of California McLaughlin Natural Reserve in fall 2012 (beginning of the drought) and fall 2014 (near the end of the drought). They used a 5-cm diameter 10-cm deep cylindrical sampler  to collect soil and associated seeds from 80 different plots.  The researchers also used these same plots to estimate aboveground-cover, and to identify the aboveground species that were present. The research team germinated and identified more than 11,000 seeds.

laforgiagreenhouse.png

Plants germinating in the greenhouse. Credit Marina LaForgia.

The researchers knew from previous work on aboveground vegetation that exotic annual grasses declined very sharply in response to drought.  In contrast, the native forbs did relatively well, in part depending on their specific leaf area (SLA) – a measure of relative leaf size, with low SLA plants conserving water more efficiently. It seemed reasonable that these same patterns would be reflected belowground. Recall that most grass seeds are incapable of extended dormancy, while many forbs can remain dormant for several years. Consequently, LaForgia and her colleagues expected that grass abundance in the seed bank would decline more sharply than would forb abundance. In addition, they expected that high SLA forbs would not do as well as low SLA forbs during drought.

The researchers discovered very sharp differences between the two groups over the course of the drought. Exotic annual grasses declined sharply in the seed bank, while native annual forb abundance tripled.  Aboveground cover of grasses declined considerably, while aboveground cover of forbs increased modestly.  Clearly the exotic grasses were suffering from the drought, while the forbs were doing quite well.

LaForgiaFig1

(a) Seed bank abundance of grasses (red circles) and forbs (blue triangles) at beginning of drought (2012) and near end of drought (2014). (b) Percent cover of grasses (red circles) and forbs (blue triangles) at beginning of drought (2012) and near end of drought (2014). Data are based on samples from 80 plots. Error bars indicate one standard error.

We can see these differences on an individual species basis, with most of the grasses declining modestly or sharply in abundance, while most of the forbs increased.

LaForgiaFig2

Mean change in seed bank abundance per species based on 15 exotic grass species and 81 native forb species.

It is not surprising that the grasses do so poorly during the drought.  Presumably, less water causes poorer germination, growth, survival and seed production.  In addition, because grass seeds have a low capacity for dormancy, grass abundance will tend to decrease in the seed bank very quickly with such a low infusion of new seeds.

But why are the forbs actually doing better with less water available to them?  One explanation is that grass abundance and cover declined sharply, causing the forbs to experience reduced competition with grasses that might otherwise inhibit their growth, development and reproductive success. The tripling of native forbs in the seed bank was much greater than the 14% increase in aboveground forb cover.  The researchers reason that the drought caused many of the forb seeds to remain dormant, leading to them building up in the seed bank. This was particularly the case for low SLA forbs, which increased much more than did high SLA forbs in the seed bank.

We can understand exotic grass behavior in the context of their place of origin – the Mediterranean basin, which tends to have wet winters.  In that environment, natural selection favored individuals that germinated quickly, grew fast and made lots of babies. Since their introduction to California in the mid 1800s, 2014 was the driest year on record.  It will be fascinating to see if these exotic grasses can recover when, and if, wetter conditions return.  Can we bank on it?

note: the paper that describes this research is from the journal Ecology. The reference is LaForgia, M.L., Spasojevic, M.J., Case, E.J., Latimer, A.M. and Harrison, S.P., 2018. Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology99 (4): 896-903. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Saguaro survival: establishing an icon

Having grown up in the New York metropolitan area, my only contact with the saguaro cactus, Carnegiea gigantea, was from several TV westerns, which dubiously placed these mammoth cacti in New Mexico, Texas and Colorado.  In fact, the saguaro is limited to the Sonoran Desert of northwestern Mexico, extreme southeast California and southern and central Arizona. You won’t find these cacti further north, because a freeze lasting more than 24 hours kills them.  I still remember my first real sighting of these cacti; I was amazed at how distinct they seemed in comparison to the other vegetation, and I delighted in their abundance.

Daniel Winkler - Saguaro Photo 1

Dense patch of saguaros. Credit: Daniel Winkler

Many others delight in their abundance as well.  The flowers, fruits and seeds feed many animals (including humans).  They were an important food for the Tohono O’odham and Pima Indians – eaten fresh or converted into numerous products including wine, juice, jam and syrup.

Daniel Winkler - Saguaro Photo 2

Large saguaro with many fruits emanating from the apex of its branches. Credit: Daniel Winkler

Woodpeckers and flickers excavate nests in the saguaro’s trunk, which are subsequently occupied by other animals such as snakes, arthropods and small mammals.

nesthole

Saguaro with nest cavity excavated near the top of its trunk. Credit: Daniel Winkler

Daniel Winkler also delighted in the saguaro’s awesomeness. As he describes “I fell in love with answering some basic ecology questions about the saguaro. I was surprised that scientists had been studying this wonderful plant for almost 100 years and there were still many basic questions about the species general biology and ecology that remained unanswered. Thus, I was hooked immediately and became obsessed with saguaro.”

Don Swann - Photo of D. Winkler with young saguaros

Daniel Winkler with young saguaros. Credit: Don Swann

Winkler and his colleagues wanted to know how moisture, temperature and habitat influence the establishment or survival of juvenile saguaro seedlings. Previous research had shown that saguaro height can be used to estimate saguaro age, given knowledge of previous rainfall in a particular area. So buoyed by an army of citizen scientists whom they recruited with the help of social media, student groups from schools and volunteers working at the Saguaro National Park, the research team estimated the age of every saguaro on 36 4-ha plots (1 ha = 10,000 m2).

Going into the study, the researchers knew that rainfall was a very important factor, with saguaros surviving better during wet periods.  But they also knew that historically, some areas located near each other showed different establishment trends, thus they suspected that other variables, particularly land use and other landscape factors, might be important.  They did their research in two different districts within the park: 21 plots in the Rincon Mountain District (RMD) on the east side of the park, and 15 plots in the Tucson Mountain District (TMD) to the west. They classified each plot as a particular habitat type based on slope, elevation and soil-type. Bajada was low elevation, flat and had gravelly porous soils.  Foothills were intermediate elevation and intermediate slope, while sloped habitats had highest elevation, steepest slope, and the coarsest rockiest soils.

Daniel Winkler - Saguaro Photo 4

Panoramic view of Saguaro National Park showing diversity of habitats. Credit: Daniel Winkler.

Winkler and his colleagues calculated the Palmer Drought Severity Index (PDSI) for the years 1950-2003. The PDSI quantifies the water balance between precipitation and evapotranspiration, taking into account not only rainfall but also other factors such as temperature and cloud cover.  The PDSI was estimated by assessing tree ring width for each year in nearby woodlands; wet conditions have wide tree rings (maximum PDSI value = +6), while dry years have narrow tree rings (minimum PDSI value = -6).

The researchers discovered a very strong association between the PDSI and seedling establishment. Low PDSI at the beginning and especially the end of the time frame was associated with low seedling establishment, while high PDSI (particularly in the 1980s was associated with high rates of seedling establishment (top graph below).  But other patterns emerged as well.  For example, establishment was higher in the TMD during the wettest years, but higher in the RMD during the most recent drought (bottom graph below).

WinklerFig1

Top. Total number of saguaros (left Y-axis) established per hectare from 1950-2003 in relation to PDSI (dashed line, right Y-axis). Bottom. Total number of saguaros established per hectare in the Tucson Mountain District (TMD – filled bars) and the Rincon Mountain District (RMD – open bars)  from 1950-2003 in relation to PDSI (dashed line, right Y-axis).

Saguaro establishment increased in all habitats when conditions were relatively wet (more positive PDSI values).  Under drought conditions, slopes had greatest saguaro establishment, while establishment increased more rapidly in foothills (and to a lesser extent in Bajadas) as moisture levels increased.

WinklerFig2

Model projecting number of saguaros established in the three major habitats in relation to PDSI.  Shaded regions are 95% confidence intervals.

The researchers were surprised at how tight the connection was between drought and saguaro establishment. But landscape features are also important.  The TMD is warmer and dryer than the nearby RMD, and had substantially lower establishment during the recent drought. The slopes in the RMD are steeper and rockier than sloped areas of the TMD, and may buffer saguaros from drought by capturing water in rock crevices and holding it for longer periods of time so it can be absorbed by saguaro roots. Nurse trees that provide shade to young saguaros may also be more common on the RMD slopes.

Winkler and his colleagues are concerned about the long-term impacts of climate change on saguaro populations, particularly in the drier areas of the TMD. They urge researchers to explore how long-term management of grazing and invasive species influences saguaro establishment across the landscape.  They also encourage researchers to gather some very basic data about saguaros, such as how they access water and how human water use patterns influence the water’s availability to this iconic species.

note: the paper that describes this research is from the journal Ecology. The reference is Winkler, D. E., Conver, J. L., Huxman, T. E. and Swann, D. E. (2018), The interaction of drought and habitat explain space–time patterns of establishment in saguaro (Carnegiea gigantea). Ecology 99: 621-631. doi:10.1002/ecy.2124. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Field gentian – when it’s good to be eaten

We tend to think of plants as victims – after all any interested herbivore can simply walk, fly or crawl over to its favorite plant, and begin munching. But not so fast! In reality, plants have a variety of ways they can make life difficult for potential herbivores. Plants can escape herbivores by simply growing in places that are not easily accessible (such as in cracks, or high enough to be out of a herbivore’s reach) or by growing at a time of year when herbivores are away from the plant’s habitat. Plants also use mechanical defenses such as thorns or a diverse array of chemical defenses to thwart overzealous herbivores. A third approach – tolerance – can take many forms. For example, following attack by a herbivore some plants can increase photosynthetic rates or reduce the time until seed production . Tommy Lennartsson and his colleagues were interested in a particular form of tolerance that ecologists call overcompensation, in which damaged plants produce more seeds than undamaged plants.

LennartssonFigure1

Herbivores in action. Notice the difference in vegetation height inside and outside the pasture. Credit: Tommy Lennartsson.

Overcompensation is an evolutionary puzzle, because undisturbed plants produce fewer offspring than partially eaten plants. That outcome seems to fly in the face of the scientific principle that natural selection favors individuals with traits that promote reproductive success. Lennartsson and his colleagues investigated this evolutionary puzzle by comparing two subspecies of the herbaceous field gentian Gentianella campestris. The first subspecies, Gentianella campestris campestris (which we’ll just call campestris), has relatively unbranched shoot architecture when intact, growing to about 20 cm tall, but produces multiple fruiting branches when the dominant apical meristem is eaten. The second subspecies, Gentianella campestris islandica (which we’ll call islandica), is much shorter (about 5-10 cm tall), and always has a multi-branched architecture.

Lennartsson1

Two subspecies of field gentian – campestris (left) and islandica (right).

Environmental conditions and soils can vary dramatically, even on a small spatial scale. The field site was a gently-sloped grassland in Sweden that had coarser, dryer soil on the ridge, and finer, wetter and richer soil in the valley. This created a productivity gradient, with taller vegetation in the valley. The average  height of all the vegetation was 15 cm in the high-productivity valley, 10 cm on the medium-productivity slope and 5 cm on the low-productivity ridge.

The researchers used this natural variation to set up an experiment that would allow them to explore hypotheses about why an undisturbed campestris is less successful than one that is partially-eaten. One hypothesis (the overcompensation hypothesis) is that campestris restrains branching to conserve resources, so that when it is grazed it has plenty of resources in reserve to be used for regrowth and the production of prolific branches, flowers and seeds. Limited branching and limited seed production of ungrazed campestris are simply a cost of tolerance, while overcompensation after damage maximizes reproductive success. A second hypothesis (the competition hypothesis) is that restrained branching allows the plant to grow tall, so it can compete better in ungrazed pastures than can the much shorter islandica. These two hypotheses are not mutually exclusive.

To test these two hypotheses, the researchers set up 2 X 2 meter experimental plots in the valley (18 plots), slope (12 plots) and the ridge (6 plots). They planted 2000 seeds per subspecies in each plot, which ultimately yielded about 20 plants of each subspecies per plot. Of course there were many other neighboring plant species in these plots. In the high productivity plots (valley), the neighboring plants in six plots were clipped to a height of 12 cm, six plots to 8 cm and six plots to 4 cm. In the medium productivity plots (which naturally only grew to 10 cm), the researchers cut neighboring plants to 8 cm in 6 plots and 4 cm in six plots. Finally, in the low productivity plots, the researchers cut neighboring plants to 4 cm in all six plots. In mid July, half of the gentian plants in each plot were clipped to the same height as the surrounding vegetation, while the remainder were not clipped.

Lennartsson2

Experimental plots from the valley (left), slope (middle) and ridge (right).  Black squares represent plots where neighboring plants were clipped to 12 cm, grey squares to 8 cm, and clear squares to 4 cm. Squares with slashes through them (left)  represent plots that were used for a different purpose.

The beauty of this experimental design, is that by counting seeds, the researchers could assess the reproductive success of both subspecies under conditions of high competition (when surrounded by tall neighbors) and low competition (when surrounded by shorter neighbors). At the same time, clipping the two subspecies allowed the researchers to simulate grazing in these different competitive environments. Lennartsson and his colleagues found that unclipped islandica did better than unclipped campestris when surrounded by short or medium height neighbors, but that islandica success plummeted when the neighbors were very tall (see the left graph below). Campestris reproductive success also dropped when surrounded by tall competitors, but not as much as did islandica, so that campestris produced twice as many seeds than islandica in the high competition environment (also the left graph).

When plants were clipped to simulate grazing, campestris outperformed islandica in all three competitive environments. Campestris actually produced more seeds when it was clipped than when it was not clipped in the low and medium competition environments. Thus campestris overcompensated for grazing under conditions of low and moderate competition (see the right graph below).

LennartssonFig2

Mean (+ standard error) seed production for unclipped (left graph) and clipped (right graph) field gentian subspecies in relation to surrounding vegetation height.  Sample sizes are in bars.

The researchers collected data on growth rates, development, survival probabilities and reproductive success for both species under conditions of being clipped or unclipped at different levels of competition. They then used these data to create a population growth model in relation to the percentage of grazing (damage risk) at different levels of productivity. In these graphs, a stochastic growth rate of 1.0 (on the y-axis) indicates that the population is stable, above 1.0 indicates it will increase and below 1.0 indicates a declining population.

LennartssonFig4

Population growth rate of both subspecies in relation to damage risk at different levels of productivity.  These models predict that the population will increase at growth rates above the dotted line (growth rate = 1.0) and decline below the dotted line.

This model shows that in high productivity environments, campestris always does better than islandica (top graph). However, the model predicts that islandica will decline at any damage level (note in the top graph that all islandica damage values yield a growth rate below 1.0), while campestris will also decline except for very high damage risks. In medium and low productivity populations (middle and bottom graphs), islandica does better than campestris when damage risk is low, but the reverse is true at high damage risk.

So how do these results relate to the two hypotheses for why an undisturbed campestris is less successful than one that is partially-eaten. Campestris overcompensated for damage by producing more seeds and having positive population growth under most levels of productivity. In contrast, islandica undercompensated when damaged, but produced more seeds than campestris when ungrazed, except for in the high productivity environment. These differences in responses support the hypothesis that restrained branching is favored by natural selection in environments where damage from grazing is common (the overcompensation hypothesis). But, the superior performance by campestris in productive ungrazed environments supports the competition hypothesis.

Can we generalize these findings to other plants? Lennartsson and his colleagues point out that many short-lived grassland plants can’t grow tall enough to be effective competitors for light. These plants are thus restricted to environments where the surrounding plants are not very tall. Two factors commonly create conditions where there are short neighboring plants: grazing and unproductive (low nutrient) soils. When grazing is widespread, tolerance mechanisms such as overcompensation are favored by natural selection. When soils are unproductive, unrestrained branching is favored. Therefore, Gentianella campestris provides us with a natural experiment for testing hypotheses about how natural selection acts on plants to promote their reproductive success in a variable environment.

note: the paper that describes this research is from the journal Ecology. The reference is Lennartsson, T., Ramula, S. and Tuomi, J. (2018), Growing competitive or tolerant? Significance of apical dominance in the overcompensating herb Gentianella campestris. Ecology, 99: 259–269. doi:10.1002/ecy.2101. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

 

“Notes from Underground” – cicadas as living rain gauges

Given recent discussions between Donald Trump and Kim Jong-un about whose button is bigger, many of us with entomological leanings have revisited the question of what insects are most likely to dominate a post-nuclear world. Cicadas have a developmental life history that predisposes them to survival in the long term because some species in the eastern United States spend many subterranean years as juveniles (nymphs), feeding on the xylem sap within plants’ root systems. Magicicada nymphs live underground for 13 or 17 years, depending on the species, before digging out en masse, undergoing one final molt, and then going about the adult business of reproduction. This life history of spending many years underground followed by a mass emergence has not evolved to avoid nuclear holocausts while underground, but rather to synchronize emergence of billions of animals. Mass emergence causes predator satiation, an anti-predator adaptation in which predators are gastronomically overwhelmed by the number of prey items, so even if they eat only cicadas and nothing else, they still are able to consume only a small fraction of the cicada population.

magicicadaarthur-d-guilani.png

Mass Magicicada emergence picturing recently-emerged winged adults, and the smaller lighter-colored exuviae (exoskeletons) that are shed during emergence. Credit: Arthur D. Guilani.

Less well-known are the protoperiodical cicadas (subfamily Tettigadinae) of the western United States that are abundant in some years, and may be entirely absent in others. Jeffrey Cole has studied cicada courtship songs for many years, and during his 2003 field season noted that localities that had previously been devoid of cicadas now (in 2003) hosted huge numbers of six or seven different species. He returned to those sites every year and high diversity and abundance reappeared in 2008 and 2014. This flexible periodicity contrasted with their eastern Magicicada cousins, and he wanted to know what stimulated mass emergence.

okanagana-cruentifera-1.jpg

clidophleps-wrighti-teneral.jpg

Protoperiodical cicadas studied by Chatfield-Taylor and Cole.  Okanagana cruentifera (top) and Clidophleps wrighti (bottom). Credit Jeffrey A. Cole.

Cole and his graduate student, Will Chatfield-Taylor, considered two hypotheses that might explain protoperiodicity in southern California (where they focused their efforts). The first hypothesis is that cicada emergence is triggered by heavy rains generated by El Niño Southern Oscillation (ENSO), a large-scale atmospheric system characterized by high sea temperature and low barometric pressure over the eastern Pacific Ocean. ENSO has a variable periodicity of 4.9 years, which roughly corresponds to the timing Cole observed while doing fieldwork. The second hypothesis recognized that nymphs must accumulate a set amount of xylem sap from their host plants to complete development. Sap availability depends on precipitation, and this accumulation takes several years in arid habitats. So while ENSO may hasten the process, the key to emergence is a threshold amount of precipitation over a several year timespan.

Working together, the researchers were able to identify seven protoperiodical species by downloading museum specimen data (including where and when each individual was collected) from two databases (iDigBio and SCAN). They also used data from several large museum collections, which gave them evidence of protoperiodical cicada emergences back to 1909. Based on these data, Chatfield-Taylor and Cole constructed a map of where these protoperiodical cicadas emerge.

ColeFig1

Maps of five emergence localities discussed in this study.

The researchers tested the hypothesis that protoperiodical cicada emergences follow heavy rains triggered by ENSO by going through their dataset to see if there was a correlation between ENSO years and mass cicada emergences. Of 20 mass cicada emergences since 1918, only five coincided with ENSO events, which is approximately what would be expected with a random association between mass emergences and ENSO. Scratch hypothesis 1.

Let’s look at the second hypothesis. The researchers needed reliable precipitation data between years for which they had good evidence that there were mass emergences of their seven species. Using a statistical model, they discovered that 1181 mm was a threshold for mass emergences, and that three years was the minimum emergence interval regardless of precipitation. Only after 1181 mm of rain fell since the last mass emergence, summed over at least three years, would a new mass emergence be triggered.

ColeFig2

Cumulative precipitation over seven time periods preceding cicada emergence.

The nice feature of this model is that it makes predictions about the future. For example, the last emergence occurred in the Devil’s punchbowl vicinity in 2014. Since then that area has averaged 182.2 mm of precipitation per year. If those drought conditions continue, the next mass emergence will occur in 2021 at that locality, which is longer than its historical average. Only time will tell. Hopefully Mr. Trump and Mr. Jong-un will be able to keep their fingers off of their respective buttons until then.

note: the paper that describes this research is from the journal Ecology. The reference is Chatfield-Taylor, W. and Cole, J. A. (2017), Living rain gauges: cumulative precipitation explains the emergence schedules of California protoperiodical cicadas. Ecology, 98: 2521–2527. doi:10.1002/ecy.1980. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.

 

Blinded by the light: victims of the night

In late October, the municipality of Buenavista del Norte on the Canary Island of Tenerife, celebrates the day of the Virgin of Los Remedios, including, among other features, a big light display. As a child, Airam Rodríguez noticed that many shearwaters would also drop in (literally) for the festivities, attracted by the bright lights, but unable, in many cases, to get back in the air. Many of these shearwaters died from a variety of causes, including the impact of flying into the ground, dehydration, predation and poaching. As an adult, Rodríguez collaborated with researchers around the world to evaluate the scope of light-induced shorebird fallout.

short-tailed-shearwater-fledgling-grounded-by-lights-photo-airam-rodrc3adguez.png

Fallout victim: grounded Short-tailed Shearwater. Credit: Airam Rodríguez

The researchers began their work by searching a science citation index – the Web of Science – for articles on light-induced seabird mortality. They used references from these articles to find additional articles. In addition, they used the internet and social media to find programs in which citizens are encouraged to report grounded birds, and contacted people associated with these programs to get qualitative and quantitative data.

Rodríguez and his colleagues discovered light induced seabird fatality on 47 islands, three continental locations and across all of the world’s oceans. Of 115 species of burrow-nesting petrels, 56 have been reported as grounded by light. Several other groups of birds, including puffins, auklet and eiders also suffer from light-induced fallout, and it is very likely that more species are unreported.

RodriguezFig1

Numbers of reported grounded seabird fledglings across the globe.  Circle size = numbers of birds  reported. Numbers = number of species affected. Circle color = IUCN (endangerment) category for each species as follows: CR = critically endangered, EN = endangered, VU = vulnerable, NT = near threatened, LC = least concern.

Of deep concern is that 24 species are globally threatened. In addition, fallout has been reported at sea, induced by lights used for fisheries and by lights on oil platforms. All of the studies of light-induced fatalities on land documented the highest mortality in fledglings that are grounded during their first flights from their nests toward the ocean.

RodriguezFig2

Numbers of species of threatened seabirds that were rescued across the globe.  Numbers were not available for species with ? symbol.

Researchers don’t know why birds are attracted to lights. Perhaps birds view lights as a source of food; for example some species eat bioluminescent prey. Alternatively, as cavity-nesting birds, the only light these chicks see is from their burrow entrance, particularly when their parents bring in food, so the fledglings might confuse light with a food source. Lastly, artificial lights might override any celestial light cues the birds normally use for navigation, confusing them and causing them to crash to the ground. Supporting this hypothesis, seabirds generally don’t crash into lights, which might be expected if they mistook a light for bioluminescent prey.

Cory's shearwater fledgling at their nest at Tenerife Canary Islands. Photo by Beneharo Rodríguez

Fledgling Cory’s Shearwater first sees the light of day after emerging from its burrow at Arona on southern Tenerife Island. Credit: Beneharo Rodríguez

So what can be done about this problem? Accurate data are hard to come by, as many estimates of fallout-induced mortality come from relatively untrained volunteers, who are less likely to report dead birds. As one example, on Kauai, surveys from a general public rescue program for Newell’s Shearwaters identified 7.7% mortality, whereas later systematic surveys by trained researchers indicated 43% mortality. In some rescue operations, birds are banded and released, which, in theory, allows researchers to estimate the survival rate of rescue birds, but, in practice, these data are usually insufficient for accurate estimates

Rodríguez and his colleagues recommend a multipronged approach to combat seabird fallout. Individuals grounded by artificial lights can be rescued so they don’t succumb to the common causes of death – dehydration, predation and vehicle collision. In many cases the general public takes birds to designated rescue stations, where they are cared for until judged to be ready to release. The first rescue program was set up on Kauai in 1978; since then, people working for 16 rescue programs have released over 40,000 birds.

Release of a grounded shearwater. Photo Nazaret Carrasco (1)

Beneharo Rodríguez releases a Cory’s Shearwater from a cliff at Buenavista del Norte on Tenerife Island. Credit: Nazaret Carrasco.

The birds would be best served if humans behaved in ways that minimized fallout. Researchers need to learn more about why birds are attracted to artificial lights so engineers can develop outside lights that don’t attract them. Existing lights can be turned off when not needed, and dimmed when they are essential. Special accommodation can be made for unusual cases; for example in Cilaos, Reunion, Indian Ocean, streetlights are turned off during the fledging period of Barau’s Petrel. Lights can also be shielded so they illuminate an area for humans, but minimize the light visible to birds. Degraded nesting and breeding habitat can be restored to help compensate for birds that are lost to fallout. Lastly, conservation efforts should benefit the local economies so that residents will be more likely to support conservation initiatives, such as reduced evening lighting, that they might otherwise oppose.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Rodríguez, A., Holmes, N. D., Ryan, P. G., Wilson, K.-J., Faulquier, L., Murillo, Y., Raine, A. F., Penniman, J. F., Neves, V., Rodríguez, B., Negro, J. J., Chiaradia, A., Dann, P., Anderson, T., Metzger, B., Shirai, M., Deppe, L., Wheeler, J., Hodum, P., Gouveia, C., Carmo, V., Carreira, G. P., Delgado-Alburqueque, L., Guerra-Correa, C., Couzi, F.-X., Travers, M. and Corre, M. L. (2017), Seabird mortality induced by land-based artificial lights. Conservation Biology, 31: 986–1001. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.

Seagrass scourge: when nutrient enrichment reaches the tipping point

Sean Connell has watched as south Australia has lost vast expanses of kelp forest and seagrasses over the past years. One of the primary culprits associated with loss of seagrass meadows is excessive nutrients, particularly nitrogen, which enters the ecosystem with runoff, and causes an increase in algal epiphytes (epiphytes are small plants that grow on other plants). Epiphytes can negatively affect seagrass by blocking sunlight needed for photosynthesis, and indirectly, by increasing the rate of cellular respiration within the ecosystem, thus using up oxygen needed by seagrass for metabolic processes.

DolphinConnell

Two dolphins swim above a bed of seagrass off the south Australian coast.

Connell and his colleagues noticed that seagrass loss was often sudden; a large seagrass meadow would appear to be in good shape, and then it would abruptly disappear. They suggested that there might be a threshold effect in nutrient levels that seagrasses can tolerate; that these systems function well until a certain threshold in nutrient levels is crossed, above which there is an abrupt loss of seagrasses. They tested this hypothesis by subjecting plots of the seagrass Amphibolis antarctica to seven different concentrations of dissolved inorganic nitrogen (DIN) over a 10 month period, and monitored the abundance of epiphytes and seagrass over that timespan.

The meadows were about two km offshore from Lady Bay, Fleurieu Penninsula, Australia, in about 5 meters of water. Different amounts of nitrogen fertilizer were wrapped in nylon bags (for slow continuous release of DIN) and staked to the ocean floor. Amphibolis antarctica grows by producing new leaves at the top of each leaf cluster, but at the same time it drops old leaves. Leaf turnover, the researchers’ measure of growth, is simply new leaf production minus old leaf drop. The researchers tied on a small nylon cable at known locations on selected plants, noted how many leaves were above and below each tie at the beginning of the experiment, and recounted leaf number 10 months later. Finally, the researchers measured epiphyte growth by microscopically viewing a sample of seagrass leaves, and counting the number seagrass leaf cells that were covered by epiphytes.

Seagrass growth was relatively unaffected by all tested DIN levels.

ConnellFigA

Leaf production per day in relation to concentration of DIN.

However, leaf drop showed a strong threshold effect; leaf drop rates increased sharply between 0.13 – 0.15 mg/L of DIN.

ConnellFigB

Leaf drop per day in relation to concentration of DIN.

Putting these two graphs together, you can see (below) that leaf turnover switched from positive to negative at 0.13 – 0.15 mg/L of DIN. Negative leaf turnover translates to a sudden loss of seagrass at that threshold. At least in this system, at this location, 0.13 – 0.15 mg/L of DIN is the tipping point, beyond which the seagrass system suddenly goes into decline.

ConnellFig1

Leaf turnover per day (left y-axis and red data), and Epiphyte cover (% – right y-axis and green data), in relation to concentration of dissolved inorganic nitrogen.

The graph also shows that the tipping point coincides with an epiphyte cover of approximately 60%. It is possible that increased epiphyte cover may reduce seagrass photosynthetic rates (particularly in lower leaves), so that leaf turnover suddenly shifts into the negative zone, but the study was not designed to identify the underlying mechanism.

Seagrass meadows perform important ecosystem services, such as absorbing excess nutrients from the sediment, and providing habitat and food for a diverse group of grazers and indirectly, for their consumers. Thus seagrass conservation is vital. The danger here is that moderate levels of nutrients do not appear to have much effect on seagrass populations, but there is an abrupt shift to seagrass loss once the nutrient threshold is crossed. This makes the system very difficult to manage, because the loss occurs without warning. Australian ecologists have repeatedly failed to restore lost seagrass meadows, as simply reducing nutrient levels does not reverse the process. Thus anticipating seagrass loss before it happens is the most viable management solution for this critical ecosystem.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Connell, S. D., Fernandes, M., Burnell, O. W., Doubleday, Z. A., Griffin, K. J., Irving, A. D., Leung, J. Y.S., Owen, S., Russell, B. D. and Falkenberg, L. J. (2017), Testing for thresholds of ecosystem collapse in seagrass meadows. Conservation Biology, 31: 1196–1201. doi:10.1111/cobi.12951. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2017 by the Society for Conservation Biology. All rights reserved.