Sweltering ants seek salt

Like humans, ants need salt and sugar.  Salt is critical for a functioning nervous system and for maintaining muscle activity, while sugar is a ready energy source. In ectotherms such as ants, body temperature is influenced primarily by the external environment, with higher environmental temperatures leading to higher body temperatures.  When ants get hot their metabolic rates rise, so they can go out and do energetically demanding activities such as foraging for essential resources like salt and sugar. On the down side, hot ants excrete more salt and burn up more sugar.  In addition, like humans, very high body temperature can be lethal, so ants are forced to seek shelter during extreme heat.   As a beginning graduate student, Rebecca Prather wanted to know whether ants adjust their foraging rates on salt and sugar in response to the conflicting demands of elevated temperatures on ants’ physiological systems.

Prather at field site

Rebecca Prather at her field site in Oklahoma, USA. Credit: Rebecca Prather.

Prather and her colleagues studied two different field sites: Centennial Prairie is home to 16 ant species, while Pigtail Alley Prairie has nine species.  For their first experiment, the researchers established three transects with 100 stations baited with vials containing cotton balls and either 0.5% salt (NaCl) or 1% sucrose.  The bait stations were 1 meter apart.  After 1 hour, they collected the vials (with or without ants), and counted and identified each ant in each vial.  The researchers measured soil temperature at the surface and at a depth of 10 cm. The researchers repeated these experiments at 9 AM, 1 PM and 5 PM, April – October, 4 times each month.


Ants recruited to vials with 0.5% salt solution.  Credit: Rebecca Prather.

Sugar is easily stored in the body, so while sugar consumption increases with temperature, due to increased ant metabolic rate, sugar excretion is relatively stable with temperature.  In contrast, salt cannot be stored effectively, so salt excretion increases at high body temperature.  Consequently, Prather and her colleagues expected that ant salt-demand would increase with temperature more rapidly than would ant sugar-demand.


Ant behavior in response to vials with 0.5% salt (dark circles) and 1% sucrose (white circles) at varying soil temperatures at 9AM, 1 PM (13:00) and 5PM (17:00). The three left graphs show the number of vials discovered (containing at least one ant), while the three right graphs show the number of ants recruited per vial.  The Q10 value  = the rate of discovery or recruitment at 30 deg. C divided by the rate of discovery or recruitment at 20 deg. C. * indicates that the two curves have statistically significantly different slopes.

The researchers discovered that ants foraged more at high temperatures. However, when surface temperatures were too high (most commonly at 1 PM during summer months), ants could not forage and remained in their nests.  At all three times of day, ants discovered more salt vials at higher soil temperatures. Ants also discovered more sugar vials at higher temperatures in the morning and evening, but not during the 1 PM surveys. Most interesting, the slope of the curve was much steeper for salt discovery than it was for sugar discovery, indicating that higher temperature increased salt discovery rate more than it increased sugar discovery rate (three graphs on left).

When ants discover a high quality resource, they will recruit other nestmates to the resource to help with the harvest.  Ant recruitment rates increased with temperature to salt, but not sugar, indicating that ant demand for 0.5% salt increased more rapidly than ant demand for 1% sugar (three graphs above on right).

The researchers were concerned that the sugar concentrations were too low to excite much recruitment, so they replicated the experiments the following year using four different sugar concentrations.  Ant recruitment was substantially greater to higher sugar concentrations, but was still two to three times lower than it was to 0.5% salt.


Ant recruitment (y-axis) to different sugar concentrations at a range of soil temperatures (X-axis). Q10 values are to the left of each line of best fit.

Three of the four most common ant species showed the salt and sugar preferences that we described above, but the other common species, Formica pallidefulva, actually decreased foraging at higher temperatures.  The researchers suggest that this species is outcompeted by the other more dominant species at high temperatures, and are forced to forage at lower temperatures when fewer competitors are present.

In a warming world, ant performance will increase as temperatures increase up to ants’ thermal maximum, at which point ant performance will crash.  Ants are critical to ecosystems, playing important roles as consumers and as seed dispersers. Thus many ecosystems in which ants are common (and there are many such ecosystems!) may function more or less efficiently depending on how changing temperatures influence ants’ abilities to consume and conserve essential nutrients such as salt.

note: the paper that describes this research is from the journal Ecology. The reference is Prather, R. M., Roeder, K. A., Sanders, N. J. and Kaspari, M. (2018), Using metabolic and thermal ecology to predict temperature dependent ecosystem activity: a test with prairie ants. Ecology, 99: 2113-2121. doi:10.1002/ecy.2445Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

What grows up must go down: plant species richness and soils below.

Almost 20 years ago, Dorota Porazinska was a postdoctoral researcher investigating whether plant diversity influenced the diversity of organisms that lived in the soil below these plants, including bacteria, protists, fungi and nematodes (collectively known as soil biota).  Surprisingly, she and her colleagues discovered no linkages between aboveground and belowground species diversity.  She suspected that two issues were responsible for this lack of linkage. First, the early study lumped related species into functional groups – for example nematodes that eat bacteria, or nematodes that eat fungi.  Lumping simplifies data collection but loses a lot of data because individual species are not distinguished.  Back in those days, identifying species with DNA analysis was time-consuming, expensive, and often impractical. The second issue was that even if aboveground-belowground diversity was linked, it might be difficult to detect.  Ecosystems are very complex, and many belowground species make a living off of legacies of carbon or other nutrients that are the remains of organisms that lived many generations ago.   These legacy organic nutrient pools allow for indirect (and thus more difficult to detect) linkages between aboveground and belowground species.

Porazinska and her colleagues reasoned that if there were aboveground/belowground relationships, they would be easiest to detect in the simplest ecosystems that lacked significant pools of legacy nutrients. They also used molecular techniques that were not readily available for earlier studies to identify distinct species based on DNA analysis. The researchers established 98 1-m radius circular plots at the Niwot Ridge Long Term Ecological Research Site in the Colorado, USA Rocky Mountains. At each plot, they identified and counted each vascular plant, and recorded the presence of moss and lichen.  They also censused soil biota by using a variety of DNA amplification and isolation techniques that allowed them to identify bacteria, archaea, protists, fungi and nematodes to species.

PorazinskaOpening9256 Photo

Field assistant Jarred Huxley surveys plants in a high species richness plot. Credit Dorota L. Porazinska.

As expected in this alpine environment, plant species richness was quite low, averaging only 8 species per plot (range = 0 – 27).  In contrast to what had been found in other ecosystems, high plant diversity was associated with high diversity of soil biota.


Relationship between plant richness (x-axis) and soil biota richness (y-axis) for (A) bacteria, (B) eukaryotes (excluding fungi and nematodes), (C) fungi, and (D) nematodes.  OTUs are operational taxonomic units, which represent organisms with very similar or identical DNA sequences on a marker gene.  For our purposes, they represent distinct species.

Looking at the graphs above, you can see that different groups responded to different degrees; nematodes had the strongest response to increases in plant richness while fungi had the weakest response.  When viewed at a finer level, some groups of soil organisms, including photosynthetic microorganisms such as cyanobacteria and green algae actually decreased, presumably in response to competition with aboveground plants for light and possibly nutrients.

Given the strong relationship between plant species richness and soil biota richness, Porazinska and her colleagues next explored whether high plant richness was associated with soil nutrient levels (nutrient pools).  In general, there was a strong correlation between plant species richness and nutrient pools (see graphs below).  But soil moisture, and the ability of soil to hold moisture were the two most important factors associated with nutrient pools.


Amount (micrograms per gram of soil) of carbon (left graph) and nitrogen (right graph) in relation to plant species richness.

Ecologists studying soil processes can measure the rates at which microorganisms are metabolizing nutrients such as carbon, phosphorus and nitrogen.  The expectation was that if high plant species richness was associated with higher soil biota richness, and larger soil nutrient pools, then the activity of enzymes that metabolize soil nutrients should proportionally increase with these factors.  The researchers found that enzyme activity was very low where plants were absent or rare, and greatest in complex plant communities.  But the most important factors influencing enzyme activity were the amount of organic carbon present within the soil, and the ability of the soil to hold water.


Patchy vegetation at the field site. Credit: Cliffton P. Bueno de Mesquita.

Porazinska and her colleagues hypothesize that the relationship between plant species richness, soil biota richness, nutrient pools, and soil processes such as enzyme activity, exist in most ecosystems, but are obscured by indirect linkages between these different levels.  They hypothesize that these relationships in other ecosystems such as grasslands and forests are difficult to observe.  In these more complex ecosystems, carbon inputs into the soil form large legacy carbon pools. These carbon pools, and the ability of the soil to hold nutrient pools, fundamentally influence the abundance and richness of soil biota. In contrast, in nutrient-poor soils, such as high Rocky Mountain alpine meadows, legacy carbon pools are rare and small. Consequently, plants and soil biota interact more directly, and correlations between plant species diversity and soil biota diversity are much easier to detect.

note: the paper that describes this research is from the journal Ecology. The reference is Porazinska, D. L., Farrer, E. C., Spasojevic, M. J., Bueno de Mesquita, C. P., Sartwell, S. A., Smith, J. G., White, C. T., King, A. J., Suding, K. N. and Schmidt, S. K. (2018), Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99: 1942-1952. doi:10.1002/ecy.2420. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.


Mangroves partner with rats in China

Many of us have seen firsthand the havoc that invasive plants can wreak on ecosystems.  We are accustomed to think of native plants as unable to defend themselves, much like a skinny little kid surrounded by a group of playground bullies. ‘Not so fast’ says Yihui Zhang.  As it turns out, many native plants can defend themselves against invasions, and they do so with the help of unlikely allies.

In southern China, mangrove marshes are being invaded by the salt marsh cordgrass, Spartina alterniflora, which is native to the eastern USA coastline. Cordgrass seeds can float into light gaps among the mangroves, and then germinate and choke out mangrove seedlings.  However, intact mangrove forests can resist cordgrass invasion.  Zhang and his colleagues wanted to know how they resist.

mangrove-Spartina ecotone

Cordgrass (pale green) meets mangrove (bright green) as viewed from space. Credit: Yihui Zhang.

Cordgrass was introduced into China in 1979 to reduce coastal erosion.  It proved up to the task, quickly transforming mudflats into dense cordgrass stands, and choking out much of the native plant community.  Dense mangrove forests grow near river channels that enter the ocean, and are considerably taller than their cordgrass competitors.  The last player in this interaction is a native rat, Rattus losea, which often nests on mangrove canopies above the high tide level. At the research site (Yunxiao), many rat nests were built on mangroves, using cordgrass leaves and stems as the building material.


Rat nest constructed from cordgrass shoots rests upon a mangrove tree.  Credit Yihui Zhang.

Zhang and his colleagues suspected that cordgrass invasion into the mangrove forest was prevented by both competition from mangroves and herbivory by rats on cordgrass.

Baby rat in the nest

Baby rats in their nest. Credit Yihui Zhang.


To test this hypothesis, they built cages to exclude rats from three different habitats: open mudflats (primarily pure stands of cordgrass), the forest edge, and the mangrove forest understory, (with almost no cordgrass). They set up control plots that also had cages, but that still allowed rats to enter.


Arrow points to resprouting cordgrass. Credit Yihui Zhang.

The researchers planted 6 cordgrass ramets (genetically identical pieces of live plant) in each plot and then monitored rodent grazing, resprouting of original shoots following grazing, and shoot survival over the next 70 days.

They discovered that the cages worked; no rats grazed inside the cages.  But in the control plots, grazing was highest in the forest understory and lowest in the mudflats (Top figure below).  Most important, both habitat type and exposure to grazing influenced cordgrass survival.  In the understory, rodent grazing was very important; only one ramet survived in the control plots, while 46.7% of ramets survived if rats were excluded.  In the other two habitats, grazing did not affect ramet survival, which was very high with or without grazing (Middle figure). Rodent grazing effectively eliminated resprouting of ramets in the understory, but not in the other two habitats (Bottom figure).


Impact of rat grazing on cordgrass in the field study in three different habitats.  Top figure is % of stems grazed, middle figure is transplant survival, and bottom figure is resprouting after grazing (there was no grazing in the rodent exclusion plots). Error bars are 1 standard error. Different letters above bars indicate significant differences between treatments.

The researchers suspected that low light levels in the understory were preventing cordgrass from resprouting after rat grazing. This was most easily tested in the greenhouse, where light conditions could be effectively controlled.  High light was 80% the intensity of outdoor sunlight, medium light was 33% (about what strikes the forest edge) and low light was 10% the intensity of outdoor sunlight (similar to mangrove understory light).  Rat grazing was simulated by cutting semi-circles on the stembase, pealing back the leaf sheath, and digging out the leaf tissue. Cordgrass ramets were planted in large pots, exposed to different light and grazing treatments, and monitored for survival, growth and resprouting following grazing.

Greenhouse setup

Cordgrass growing in greenhouse under different light treatments. Credit: Yihui Zhang.

Zhang and his colleagues found that simulated grazing sharply reduced cordgrass survival from 85% to 7% at low light intensity, but had no impact on survival at medium or high light intensities.  Cordgrass did not resprout after simulated grazing at low light intensity, in contrast to approximately 50% resprouting at medium and high light intensity.


Survival (top) and resprouting (bottom) of cordgrass following simulated grazing in the greenhouse experiment.

The researchers conclude that grazing by rats and shading by mangroves are two critical factors that make mangroves resistant to cordgrass invasion. Rats tend to build their nests near the mangrove forest edge, so it is not clear how far into the forest the rat effect extends. Rats do prefer to forage in the understory (rather than right along the edge), presumably because the understory helps to protect them from predators.  In essence, mangroves compete directly with cordgrass by shading them out, and also indirectly by attracting cordgrass-eating rats. Conservation biologists need to be aware of both direct and indirect effects when designing management programs for protecting endangered ecosystems such as mangrove forests.

note: the paper that describes this research is from the journal Ecology. The reference is Zhang, Y. , Meng, H. , Wang, Y. and He, Q. (2018), Herbivory enhances the resistance of mangrove forest to cordgrass invasion. Ecology. Accepted Author Manuscript. doi:10.1002/ecy.2233. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Plant communities bank against drought

Many plants shed their young embryos (seeds) into the soil where they may accumulate in a dormant (non-growth) state over years before germinating (resuming growth and development). Ecologists describe this collection of seeds as a seed bank.  Marina LaForgia describes how scientists were able to germinate and grow to maturity some 32,000 year old Silene stenophylla seeds that was stashed, probably by an ancient squirrel, in the permafrost! With increased climatic variation predicted by most climate models, she wanted to know how environmental variability might affect germination of particular groups of species within a community.  In addition, she and her colleagues recognized that most ecological studies investigate community responses to disturbances by looking at the aboveground species.  It stands to reason that we should consider the below-surface seed bank as a window to how a community might respond in the future.


Some seedlings coming up from the seed bank. Credit:Marina LaForgia.

Seed banks can be viewed as a bet-hedging strategy that spreads out germination over several (or many) years to reduce the probability of catastrophic population decline in response to one severe disturbance, such as drought, flood or fire. In some California annual grassland communities, species diversity is dominated by annual forbs – nonwoody flowering plants that are not grasses. Many forbs produce seeds that can lie dormant in the seed banks for several years. Though these forbs are the most diverse group, there are also about 15 species of exotic annual grasses that dominate the landscape in abundance and cover. These grasses dominate because they produce up to 60,000 seeds per m2, they grow very quickly, and they build up a layer of thatch that suppresses native forbs. However, seeds from these grasses cannot lie dormant in the seed bank for very long.



Area of field site dominated by Delphinium (purple flower) and Lasthenia (yellow flower).  Looking closely you can also see some tall grasses rising. Credit Marina LaForgia.

How is drought affecting these two major components of the plant community? LaForgia and her colleagues answered this question by collecting seeds from a northern California grassland at the University of California McLaughlin Natural Reserve in fall 2012 (beginning of the drought) and fall 2014 (near the end of the drought). They used a 5-cm diameter 10-cm deep cylindrical sampler  to collect soil and associated seeds from 80 different plots.  The researchers also used these same plots to estimate aboveground-cover, and to identify the aboveground species that were present. The research team germinated and identified more than 11,000 seeds.


Plants germinating in the greenhouse. Credit Marina LaForgia.

The researchers knew from previous work on aboveground vegetation that exotic annual grasses declined very sharply in response to drought.  In contrast, the native forbs did relatively well, in part depending on their specific leaf area (SLA) – a measure of relative leaf size, with low SLA plants conserving water more efficiently. It seemed reasonable that these same patterns would be reflected belowground. Recall that most grass seeds are incapable of extended dormancy, while many forbs can remain dormant for several years. Consequently, LaForgia and her colleagues expected that grass abundance in the seed bank would decline more sharply than would forb abundance. In addition, they expected that high SLA forbs would not do as well as low SLA forbs during drought.

The researchers discovered very sharp differences between the two groups over the course of the drought. Exotic annual grasses declined sharply in the seed bank, while native annual forb abundance tripled.  Aboveground cover of grasses declined considerably, while aboveground cover of forbs increased modestly.  Clearly the exotic grasses were suffering from the drought, while the forbs were doing quite well.


(a) Seed bank abundance of grasses (red circles) and forbs (blue triangles) at beginning of drought (2012) and near end of drought (2014). (b) Percent cover of grasses (red circles) and forbs (blue triangles) at beginning of drought (2012) and near end of drought (2014). Data are based on samples from 80 plots. Error bars indicate one standard error.

We can see these differences on an individual species basis, with most of the grasses declining modestly or sharply in abundance, while most of the forbs increased.


Mean change in seed bank abundance per species based on 15 exotic grass species and 81 native forb species.

It is not surprising that the grasses do so poorly during the drought.  Presumably, less water causes poorer germination, growth, survival and seed production.  In addition, because grass seeds have a low capacity for dormancy, grass abundance will tend to decrease in the seed bank very quickly with such a low infusion of new seeds.

But why are the forbs actually doing better with less water available to them?  One explanation is that grass abundance and cover declined sharply, causing the forbs to experience reduced competition with grasses that might otherwise inhibit their growth, development and reproductive success. The tripling of native forbs in the seed bank was much greater than the 14% increase in aboveground forb cover.  The researchers reason that the drought caused many of the forb seeds to remain dormant, leading to them building up in the seed bank. This was particularly the case for low SLA forbs, which increased much more than did high SLA forbs in the seed bank.

We can understand exotic grass behavior in the context of their place of origin – the Mediterranean basin, which tends to have wet winters.  In that environment, natural selection favored individuals that germinated quickly, grew fast and made lots of babies. Since their introduction to California in the mid 1800s, 2014 was the driest year on record.  It will be fascinating to see if these exotic grasses can recover when, and if, wetter conditions return.  Can we bank on it?

note: the paper that describes this research is from the journal Ecology. The reference is LaForgia, M.L., Spasojevic, M.J., Case, E.J., Latimer, A.M. and Harrison, S.P., 2018. Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology99 (4): 896-903. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Saguaro survival: establishing an icon

Having grown up in the New York metropolitan area, my only contact with the saguaro cactus, Carnegiea gigantea, was from several TV westerns, which dubiously placed these mammoth cacti in New Mexico, Texas and Colorado.  In fact, the saguaro is limited to the Sonoran Desert of northwestern Mexico, extreme southeast California and southern and central Arizona. You won’t find these cacti further north, because a freeze lasting more than 24 hours kills them.  I still remember my first real sighting of these cacti; I was amazed at how distinct they seemed in comparison to the other vegetation, and I delighted in their abundance.

Daniel Winkler - Saguaro Photo 1

Dense patch of saguaros. Credit: Daniel Winkler

Many others delight in their abundance as well.  The flowers, fruits and seeds feed many animals (including humans).  They were an important food for the Tohono O’odham and Pima Indians – eaten fresh or converted into numerous products including wine, juice, jam and syrup.

Daniel Winkler - Saguaro Photo 2

Large saguaro with many fruits emanating from the apex of its branches. Credit: Daniel Winkler

Woodpeckers and flickers excavate nests in the saguaro’s trunk, which are subsequently occupied by other animals such as snakes, arthropods and small mammals.


Saguaro with nest cavity excavated near the top of its trunk. Credit: Daniel Winkler

Daniel Winkler also delighted in the saguaro’s awesomeness. As he describes “I fell in love with answering some basic ecology questions about the saguaro. I was surprised that scientists had been studying this wonderful plant for almost 100 years and there were still many basic questions about the species general biology and ecology that remained unanswered. Thus, I was hooked immediately and became obsessed with saguaro.”

Don Swann - Photo of D. Winkler with young saguaros

Daniel Winkler with young saguaros. Credit: Don Swann

Winkler and his colleagues wanted to know how moisture, temperature and habitat influence the establishment or survival of juvenile saguaro seedlings. Previous research had shown that saguaro height can be used to estimate saguaro age, given knowledge of previous rainfall in a particular area. So buoyed by an army of citizen scientists whom they recruited with the help of social media, student groups from schools and volunteers working at the Saguaro National Park, the research team estimated the age of every saguaro on 36 4-ha plots (1 ha = 10,000 m2).

Going into the study, the researchers knew that rainfall was a very important factor, with saguaros surviving better during wet periods.  But they also knew that historically, some areas located near each other showed different establishment trends, thus they suspected that other variables, particularly land use and other landscape factors, might be important.  They did their research in two different districts within the park: 21 plots in the Rincon Mountain District (RMD) on the east side of the park, and 15 plots in the Tucson Mountain District (TMD) to the west. They classified each plot as a particular habitat type based on slope, elevation and soil-type. Bajada was low elevation, flat and had gravelly porous soils.  Foothills were intermediate elevation and intermediate slope, while sloped habitats had highest elevation, steepest slope, and the coarsest rockiest soils.

Daniel Winkler - Saguaro Photo 4

Panoramic view of Saguaro National Park showing diversity of habitats. Credit: Daniel Winkler.

Winkler and his colleagues calculated the Palmer Drought Severity Index (PDSI) for the years 1950-2003. The PDSI quantifies the water balance between precipitation and evapotranspiration, taking into account not only rainfall but also other factors such as temperature and cloud cover.  The PDSI was estimated by assessing tree ring width for each year in nearby woodlands; wet conditions have wide tree rings (maximum PDSI value = +6), while dry years have narrow tree rings (minimum PDSI value = -6).

The researchers discovered a very strong association between the PDSI and seedling establishment. Low PDSI at the beginning and especially the end of the time frame was associated with low seedling establishment, while high PDSI (particularly in the 1980s was associated with high rates of seedling establishment (top graph below).  But other patterns emerged as well.  For example, establishment was higher in the TMD during the wettest years, but higher in the RMD during the most recent drought (bottom graph below).


Top. Total number of saguaros (left Y-axis) established per hectare from 1950-2003 in relation to PDSI (dashed line, right Y-axis). Bottom. Total number of saguaros established per hectare in the Tucson Mountain District (TMD – filled bars) and the Rincon Mountain District (RMD – open bars)  from 1950-2003 in relation to PDSI (dashed line, right Y-axis).

Saguaro establishment increased in all habitats when conditions were relatively wet (more positive PDSI values).  Under drought conditions, slopes had greatest saguaro establishment, while establishment increased more rapidly in foothills (and to a lesser extent in Bajadas) as moisture levels increased.


Model projecting number of saguaros established in the three major habitats in relation to PDSI.  Shaded regions are 95% confidence intervals.

The researchers were surprised at how tight the connection was between drought and saguaro establishment. But landscape features are also important.  The TMD is warmer and dryer than the nearby RMD, and had substantially lower establishment during the recent drought. The slopes in the RMD are steeper and rockier than sloped areas of the TMD, and may buffer saguaros from drought by capturing water in rock crevices and holding it for longer periods of time so it can be absorbed by saguaro roots. Nurse trees that provide shade to young saguaros may also be more common on the RMD slopes.

Winkler and his colleagues are concerned about the long-term impacts of climate change on saguaro populations, particularly in the drier areas of the TMD. They urge researchers to explore how long-term management of grazing and invasive species influences saguaro establishment across the landscape.  They also encourage researchers to gather some very basic data about saguaros, such as how they access water and how human water use patterns influence the water’s availability to this iconic species.

note: the paper that describes this research is from the journal Ecology. The reference is Winkler, D. E., Conver, J. L., Huxman, T. E. and Swann, D. E. (2018), The interaction of drought and habitat explain space–time patterns of establishment in saguaro (Carnegiea gigantea). Ecology 99: 621-631. doi:10.1002/ecy.2124. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Field gentian – when it’s good to be eaten

We tend to think of plants as victims – after all any interested herbivore can simply walk, fly or crawl over to its favorite plant, and begin munching. But not so fast! In reality, plants have a variety of ways they can make life difficult for potential herbivores. Plants can escape herbivores by simply growing in places that are not easily accessible (such as in cracks, or high enough to be out of a herbivore’s reach) or by growing at a time of year when herbivores are away from the plant’s habitat. Plants also use mechanical defenses such as thorns or a diverse array of chemical defenses to thwart overzealous herbivores. A third approach – tolerance – can take many forms. For example, following attack by a herbivore some plants can increase photosynthetic rates or reduce the time until seed production . Tommy Lennartsson and his colleagues were interested in a particular form of tolerance that ecologists call overcompensation, in which damaged plants produce more seeds than undamaged plants.


Herbivores in action. Notice the difference in vegetation height inside and outside the pasture. Credit: Tommy Lennartsson.

Overcompensation is an evolutionary puzzle, because undisturbed plants produce fewer offspring than partially eaten plants. That outcome seems to fly in the face of the scientific principle that natural selection favors individuals with traits that promote reproductive success. Lennartsson and his colleagues investigated this evolutionary puzzle by comparing two subspecies of the herbaceous field gentian Gentianella campestris. The first subspecies, Gentianella campestris campestris (which we’ll just call campestris), has relatively unbranched shoot architecture when intact, growing to about 20 cm tall, but produces multiple fruiting branches when the dominant apical meristem is eaten. The second subspecies, Gentianella campestris islandica (which we’ll call islandica), is much shorter (about 5-10 cm tall), and always has a multi-branched architecture.


Two subspecies of field gentian – campestris (left) and islandica (right).

Environmental conditions and soils can vary dramatically, even on a small spatial scale. The field site was a gently-sloped grassland in Sweden that had coarser, dryer soil on the ridge, and finer, wetter and richer soil in the valley. This created a productivity gradient, with taller vegetation in the valley. The average  height of all the vegetation was 15 cm in the high-productivity valley, 10 cm on the medium-productivity slope and 5 cm on the low-productivity ridge.

The researchers used this natural variation to set up an experiment that would allow them to explore hypotheses about why an undisturbed campestris is less successful than one that is partially-eaten. One hypothesis (the overcompensation hypothesis) is that campestris restrains branching to conserve resources, so that when it is grazed it has plenty of resources in reserve to be used for regrowth and the production of prolific branches, flowers and seeds. Limited branching and limited seed production of ungrazed campestris are simply a cost of tolerance, while overcompensation after damage maximizes reproductive success. A second hypothesis (the competition hypothesis) is that restrained branching allows the plant to grow tall, so it can compete better in ungrazed pastures than can the much shorter islandica. These two hypotheses are not mutually exclusive.

To test these two hypotheses, the researchers set up 2 X 2 meter experimental plots in the valley (18 plots), slope (12 plots) and the ridge (6 plots). They planted 2000 seeds per subspecies in each plot, which ultimately yielded about 20 plants of each subspecies per plot. Of course there were many other neighboring plant species in these plots. In the high productivity plots (valley), the neighboring plants in six plots were clipped to a height of 12 cm, six plots to 8 cm and six plots to 4 cm. In the medium productivity plots (which naturally only grew to 10 cm), the researchers cut neighboring plants to 8 cm in 6 plots and 4 cm in six plots. Finally, in the low productivity plots, the researchers cut neighboring plants to 4 cm in all six plots. In mid July, half of the gentian plants in each plot were clipped to the same height as the surrounding vegetation, while the remainder were not clipped.


Experimental plots from the valley (left), slope (middle) and ridge (right).  Black squares represent plots where neighboring plants were clipped to 12 cm, grey squares to 8 cm, and clear squares to 4 cm. Squares with slashes through them (left)  represent plots that were used for a different purpose.

The beauty of this experimental design, is that by counting seeds, the researchers could assess the reproductive success of both subspecies under conditions of high competition (when surrounded by tall neighbors) and low competition (when surrounded by shorter neighbors). At the same time, clipping the two subspecies allowed the researchers to simulate grazing in these different competitive environments. Lennartsson and his colleagues found that unclipped islandica did better than unclipped campestris when surrounded by short or medium height neighbors, but that islandica success plummeted when the neighbors were very tall (see the left graph below). Campestris reproductive success also dropped when surrounded by tall competitors, but not as much as did islandica, so that campestris produced twice as many seeds than islandica in the high competition environment (also the left graph).

When plants were clipped to simulate grazing, campestris outperformed islandica in all three competitive environments. Campestris actually produced more seeds when it was clipped than when it was not clipped in the low and medium competition environments. Thus campestris overcompensated for grazing under conditions of low and moderate competition (see the right graph below).


Mean (+ standard error) seed production for unclipped (left graph) and clipped (right graph) field gentian subspecies in relation to surrounding vegetation height.  Sample sizes are in bars.

The researchers collected data on growth rates, development, survival probabilities and reproductive success for both species under conditions of being clipped or unclipped at different levels of competition. They then used these data to create a population growth model in relation to the percentage of grazing (damage risk) at different levels of productivity. In these graphs, a stochastic growth rate of 1.0 (on the y-axis) indicates that the population is stable, above 1.0 indicates it will increase and below 1.0 indicates a declining population.


Population growth rate of both subspecies in relation to damage risk at different levels of productivity.  These models predict that the population will increase at growth rates above the dotted line (growth rate = 1.0) and decline below the dotted line.

This model shows that in high productivity environments, campestris always does better than islandica (top graph). However, the model predicts that islandica will decline at any damage level (note in the top graph that all islandica damage values yield a growth rate below 1.0), while campestris will also decline except for very high damage risks. In medium and low productivity populations (middle and bottom graphs), islandica does better than campestris when damage risk is low, but the reverse is true at high damage risk.

So how do these results relate to the two hypotheses for why an undisturbed campestris is less successful than one that is partially-eaten. Campestris overcompensated for damage by producing more seeds and having positive population growth under most levels of productivity. In contrast, islandica undercompensated when damaged, but produced more seeds than campestris when ungrazed, except for in the high productivity environment. These differences in responses support the hypothesis that restrained branching is favored by natural selection in environments where damage from grazing is common (the overcompensation hypothesis). But, the superior performance by campestris in productive ungrazed environments supports the competition hypothesis.

Can we generalize these findings to other plants? Lennartsson and his colleagues point out that many short-lived grassland plants can’t grow tall enough to be effective competitors for light. These plants are thus restricted to environments where the surrounding plants are not very tall. Two factors commonly create conditions where there are short neighboring plants: grazing and unproductive (low nutrient) soils. When grazing is widespread, tolerance mechanisms such as overcompensation are favored by natural selection. When soils are unproductive, unrestrained branching is favored. Therefore, Gentianella campestris provides us with a natural experiment for testing hypotheses about how natural selection acts on plants to promote their reproductive success in a variable environment.

note: the paper that describes this research is from the journal Ecology. The reference is Lennartsson, T., Ramula, S. and Tuomi, J. (2018), Growing competitive or tolerant? Significance of apical dominance in the overcompensating herb Gentianella campestris. Ecology, 99: 259–269. doi:10.1002/ecy.2101. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.


“Notes from Underground” – cicadas as living rain gauges

Given recent discussions between Donald Trump and Kim Jong-un about whose button is bigger, many of us with entomological leanings have revisited the question of what insects are most likely to dominate a post-nuclear world. Cicadas have a developmental life history that predisposes them to survival in the long term because some species in the eastern United States spend many subterranean years as juveniles (nymphs), feeding on the xylem sap within plants’ root systems. Magicicada nymphs live underground for 13 or 17 years, depending on the species, before digging out en masse, undergoing one final molt, and then going about the adult business of reproduction. This life history of spending many years underground followed by a mass emergence has not evolved to avoid nuclear holocausts while underground, but rather to synchronize emergence of billions of animals. Mass emergence causes predator satiation, an anti-predator adaptation in which predators are gastronomically overwhelmed by the number of prey items, so even if they eat only cicadas and nothing else, they still are able to consume only a small fraction of the cicada population.


Mass Magicicada emergence picturing recently-emerged winged adults, and the smaller lighter-colored exuviae (exoskeletons) that are shed during emergence. Credit: Arthur D. Guilani.

Less well-known are the protoperiodical cicadas (subfamily Tettigadinae) of the western United States that are abundant in some years, and may be entirely absent in others. Jeffrey Cole has studied cicada courtship songs for many years, and during his 2003 field season noted that localities that had previously been devoid of cicadas now (in 2003) hosted huge numbers of six or seven different species. He returned to those sites every year and high diversity and abundance reappeared in 2008 and 2014. This flexible periodicity contrasted with their eastern Magicicada cousins, and he wanted to know what stimulated mass emergence.



Protoperiodical cicadas studied by Chatfield-Taylor and Cole.  Okanagana cruentifera (top) and Clidophleps wrighti (bottom). Credit Jeffrey A. Cole.

Cole and his graduate student, Will Chatfield-Taylor, considered two hypotheses that might explain protoperiodicity in southern California (where they focused their efforts). The first hypothesis is that cicada emergence is triggered by heavy rains generated by El Niño Southern Oscillation (ENSO), a large-scale atmospheric system characterized by high sea temperature and low barometric pressure over the eastern Pacific Ocean. ENSO has a variable periodicity of 4.9 years, which roughly corresponds to the timing Cole observed while doing fieldwork. The second hypothesis recognized that nymphs must accumulate a set amount of xylem sap from their host plants to complete development. Sap availability depends on precipitation, and this accumulation takes several years in arid habitats. So while ENSO may hasten the process, the key to emergence is a threshold amount of precipitation over a several year timespan.

Working together, the researchers were able to identify seven protoperiodical species by downloading museum specimen data (including where and when each individual was collected) from two databases (iDigBio and SCAN). They also used data from several large museum collections, which gave them evidence of protoperiodical cicada emergences back to 1909. Based on these data, Chatfield-Taylor and Cole constructed a map of where these protoperiodical cicadas emerge.


Maps of five emergence localities discussed in this study.

The researchers tested the hypothesis that protoperiodical cicada emergences follow heavy rains triggered by ENSO by going through their dataset to see if there was a correlation between ENSO years and mass cicada emergences. Of 20 mass cicada emergences since 1918, only five coincided with ENSO events, which is approximately what would be expected with a random association between mass emergences and ENSO. Scratch hypothesis 1.

Let’s look at the second hypothesis. The researchers needed reliable precipitation data between years for which they had good evidence that there were mass emergences of their seven species. Using a statistical model, they discovered that 1181 mm was a threshold for mass emergences, and that three years was the minimum emergence interval regardless of precipitation. Only after 1181 mm of rain fell since the last mass emergence, summed over at least three years, would a new mass emergence be triggered.


Cumulative precipitation over seven time periods preceding cicada emergence.

The nice feature of this model is that it makes predictions about the future. For example, the last emergence occurred in the Devil’s punchbowl vicinity in 2014. Since then that area has averaged 182.2 mm of precipitation per year. If those drought conditions continue, the next mass emergence will occur in 2021 at that locality, which is longer than its historical average. Only time will tell. Hopefully Mr. Trump and Mr. Jong-un will be able to keep their fingers off of their respective buttons until then.

note: the paper that describes this research is from the journal Ecology. The reference is Chatfield-Taylor, W. and Cole, J. A. (2017), Living rain gauges: cumulative precipitation explains the emergence schedules of California protoperiodical cicadas. Ecology, 98: 2521–2527. doi:10.1002/ecy.1980. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.