Beautiful buds beset bumblebees with bad bugs

Sexual liaisons can be difficult to achieve without some type of purposeful motion.  Flowering plants, which are rooted to the ground, are particularly challenged to bring the male close enough to the female to have sex.  One awesome adaptation is pollen, technically the male gametophyte –  or gamete (sperm)-generating plant. These tiny males get to females either by floating through the air, or by being transferred by animal pollinators such as bees. Plants can lure bees to their flowers by producing nectar – a sugar rich fluid – which bees lap up and use as a carbohydrate source.  While nectaring, bees also collect pollen, either intentionally or inadvertently, which provides them with essential proteins. When bees travel to the next flower, they may inadvertently drop some of their pollen load near the female gametophyte – in this case a tiny egg-generating plant (though tiny, the female gametophyte is considerably larger than is the male gametophyte).  We call this process of “tiny boy meets tiny girl” pollination. Once the two gametophytes meet, the pollen produces one or more sperm, which it uses to fertilize an egg within the female gametophyte.  There is more to it, but this will hopefully clarify the difference between pollination and fertilization.

monardadidyma.jpg

Bumblebee forages on beebalm, Monarda didyma. Credit: Jonathan Giacomini.

All of this business takes place within the friendly confines of the flower.  The same flower may be visited by many different bees of many different species. While feeding, bees carry on other bodily functions, including defecation.  They are not careful about where they defecate; consequently a bee’s breakfast might also include feces from a previous bee visitor. Bumblebee (Bombus impatiens) feces carries many disease organisms, including the gut parasite Crithidia bombi, which can reduce learning, decrease colony reproduction and impair a queen’s ability to found new colonies. Because pollinators are so critical in ecosystems, Lynn Adler and her colleagues wondered whether certain types of flowers were better vectors for harboring and transmitting Crithidia bombi to other bumblebees.

Antirrhinummajus

Bumblebee forages on the snapdragon, Antirrhinum majus. Credit: Jonathan Giacomini.

The researchers chose 14 different flowering plant species, allowing uninfected bumblebees to forage on inflorescences (clusters of flowers) inoculated with a measured amount of Crithidia bombi parasites.  The bees were reared for seven days after exposure, and then were assessed for whether they had picked up the infection from their foraging experience, and if so, how intense the infection was. The researchers dissected each tested bee and counted the number of Crithidia cells within the gut.

researcher-photo.jpg

Researcher conducts foraging trial with Lobelia siphilitica inflorescence. Credit: Jonathan Giacomini.

Adler and her colleagues discovered that some plant species caused a much higher pathogen count (mean number of infected cells in the bee gut) than did other plant species.  For example bees that foraged on Asclepias incarnata (ASC) had four times as many pathogens, on average, than did bees that foraged on Digitalis purpurea (DIG) (top graph below). Bees foraging on Asclepias were much more likely to get infected (had greater susceptibility) than bees that foraged on several other species, most notably Linaria vulgaris (LIN) and Eupatorium perfoliatum (EUP) (middle graph). Lastly, if we limit our consideration to infected bees, the mean intensity of the infection was much greater for bees foraging on some species, such as Asclepias and Monarda didyma (MON) than on others, such as Digitalis and Antirrhinum majus (ANT) (bottom graph).

AdlerFig1

(Top graph) Mean number of Crithidia (2 microliter gut sample) hosted by bees after foraging on one of 14 different flowering plant species. This graph includes both infected and uninfected bees. (Middle graph) Susceptibility – the proportion of bees infected – after foraging trials on different plant species. (Bottom graph) Intensity of infection – Mean number of Crithidia for infected bees only. The capital letters below the graph are the first three letters of the plant genus. Numbers in bars are sample size.  Error bars indicate 1 standard error.

It would be impossible to repeat this experiment on the 369,000 known species of flowering plants (with many more still to be identified).  So Adler and her colleagues really wanted to know whether there were some flower characteristics or traits associated with plant species that served as the best vectors of disease.  The researchers measured and counted variables associated with the flowers, such as the size and shape of the corolla, the number of open flowers and the number of reproductive structures (flowers, flower buds and fruits) per inflorescence.

bluelobelia.png

Flower traits measured by Adler and colleagues (example for blue lobelia, Lobelia siphilitica). CL is corolla length. CW is corolla width. PL is petal length. PW is petal width. Credit: Melissa Ha.

The researchers also wanted to know whether any variables associated with the bees, such as bee size and bee behavior, would predict how likely it was that a bee would get infected.  Surprisingly, the number of reproductive structures per inflorescence stood out as the most important variable. In addition, smaller bees were somewhat more likely to get infected than larger bees, and bees that foraged for a longer time period were more prone to infection.

AdlerFig2

Mean susceptibility of bees to Crithidia infection after foraging on 14 different flowering plant species, in relation to the number of reproductive structures (flowers, buds and fruits) per inflorescence.

These findings are both surprising and exciting. Adler and her colleagues were surprised to find such big differences in the ability of plant species to transmit disease.  In addition, they were puzzled about the importance of number of reproductive structures per inflorescence.  At this point, they don’t have a favorite hypothesis for its overriding importance, speculating that some unmeasured aspect of floral architecture influencing disease transmission might be related to the number of reproductive structures per inflorescence.

Penstemondigitalis

Bumblebee forages on Penstemon digitalis. In addition to the open flowers, note the large number of unopened buds.  Each of these counted as a reproductive structure for the graph above. Credit: Jonathan Giacomini.

The world is losing pollinators at a rapid rate, and there are concerns that if present trends continue, there may not be enough pollinators to pollinate flowers of some of our most important food crops. Disease is implicated in many of these declines, so it behooves us to understand how plants can serve as vectors of diseases that affect pollinators. Identifying floral traits that influence disease transmission could guide the creation of pollinator-friendly habitats within plant communities, and help to maintain diverse pollinator communities within the world’s ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Adler, L. S., Michaud, K. M., Ellner, S. P., McArt, S. H., Stevenson, P. C. and Irwin, R. E. (2018), Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 99: 2535-2545. doi:10.1002/ecy.2503. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Dinoflagellates deter copepod consumption

Those of us who enjoy eating seafood are dismayed by the dreaded red tide, which renders some of our favorite prey toxic to us.  A red tide occurs when dinoflagellates and other algae increase sharply in abundance, often in response to upwelling of nutrients from the ocean floor.  Many of these dinoflagellates are red or brownish-red in color, so large numbers of them floating on or near the surface give the ocean its characteristic red color. These dinoflagellates produce toxic compounds (in particular neurotoxins) that pass through the food web, ultimately contaminating fish, molluscs and many other groups of species.

redtideCreditMarufish:FlickrIsahayaBay

Red tide at Isahaya Bay, Japan.  Credit: Marufish/Flickr.

Did toxicity arise in dinoflagellates to protect them from being eaten by predators – in particular by voracious copepods?  The problem with this hypothesis is that copepods eat an entire dinoflagellate.  Let’s imagine a dinoflagellate with a mutation that produces a toxic substance. At some point the dinoflagellate gets eaten, and the poor copepod consumer is exposed to the toxin.  Maybe it dies and maybe it lives, but the important result is that the dinoflagellate dies, and its mutant genes are gone forever, along with the toxic trait. The only way toxicity will benefit the dinoflagellate individual, and thus spread throughout the dinoflagellate population, is if it increases the survival/reproductive success of individuals with the toxic trait. This can occur if copepods have some mechanism for detecting toxic dinoflagellates, and are therefore less likely to eat them.

Jiayi Xu and Thomas Kiørboe went looking for such a mechanism using 13 different species or strains of dinoflagellates that were presented to the copepod Temora longicornis. This copepod beats its legs to create an ocean current that moves water, and presumably dinoflagellates, in its direction, which it then eats.  For their experiment, the researchers glued a hair to the dorsal surface of an individual copepod (very carefully), and they then attached the other side of the hair to a capillary tube, which was controlled by a micromanipulator. They placed these copepods into small aquaria, where the copepods continued to beat their legs, eat and engage in other bodily functions.

照片 3

Aquarium with tethered copepod and recording equipment: Credit: J. Xu.

The researchers then added a measured amount of one type of dinoflagellate into the aquarium, and using high resolution videography, watched the copepods feed over the next 24 hours.

Picture1

Tethered copepod beats its legs to attract a dinoflagellate (round blue circular cell). Credit: J. Xu.

Twelve of the dinoflegellate strains were known to be toxic, though they had several different types of poison. Protoceratium reticulatum was a nontoxic control species of dinoflagellate.  As you can see below, on average, copepods ate more of the nontoxic P. reticulatum than they did of any of the toxic species.

XuFig1

Average dinoflagellate biomass ingested by the tethered copepods.  P. reticulatum  is the nontoxic control.  Error bars are 1 SE.

Xu and Kiørboe identified two major mechanisms that underlie selectivity by the copepod predator.  In many cases, the copepod successfully captured the prey, but then rejected it (top graph below). For one strain of A. tamarense prey, and a lesser extent for K. brevis prey, the predator simply fed less as a consequence of reducing the proportion of time that it beat its feeding legs (bottom graph below).

XuFig3bd

Copepod feeding behavior on 13 dinoflagellate prey species.  Top graph is fraction of dinoflagellates rejected, while bottom graph is the proportion of time the copepods beats its feeding legs in the presence of a particular species/strain of dinoflagellate.  

If you look at the very first graph in this post, which shows the average dinoflagellate biomass consumed, you will note that both strains of K. brevis (K8 and K9) are eaten very sparingly.  The graphs just above show that the copepod rejects some K. brevis that it captures, and beats its legs a bit less often when presented with K. brevis. However, the rejection increase and leg beating decreases are not sufficient to account for the tremendous reduction in consumption. So something else must be going on.  The researchers suspect that the copepod can identify K. breviscells from a distance, presumably through olfaction, and decide not to capture them. This mechanism warrants further exploration.

One surprising finding of this study is that the copepod responds differently to one strain of the same species (A. tamarense) than it does to the other strains.  Xu and Kiorbe point out that previous studies of copepod/dinoflagellate interactions have identified other surprises.  For example, there are cases where a dinoflagellate strain is toxic to one strain of copepod, but harmless to another copepod strain of the same species. Also, within a dinoflagellate species, one strain may have a very different distribution of toxins than does a second strain.  So why does this degree of variation exist in this system?

The researchers argue that there may be an evolutionary arms race between copepods and dinoflagellates.  The copepod adapts to the toxin of co-occurring dinoflagellates, becoming resistant to the toxin. This selects for dinoflagellates that produce a novel toxin that the copepod is sensitive to. Over time, the copepod evolves resistance to the second toxin as well, and so on… Because masses of ocean water and populations of both groups are constantly mixing, different species and strains are exposed to novel environments with high frequency. Evolution happens.

note: the paper that describes this research is from the journal Ecology. The reference is Xu, J. and Kiørboe, T. (2018), Toxic dinoflagellates produce true grazer deterrents. Ecology, 99: 2240-2249. doi:10.1002/ecy.2479. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Savanna plant survival: hanging out in the right crowd

Tyler Coverdale first visited the Mpala Research Centre in Laikipia, Kenya in 2013, and immediately became painfully aware of the abundant spiny and thorny plants that cover the savanna.  Spines help defend the plants from voracious elephants, giraffes and numerous other herbivores that depend on vegetation for their sustenance.

Camels

Camels browsing on  Barleria trispinosa at Mpala Research Centre, Kenya. Credit Tyler Coverdale.

Acacia trees such as Acacia etbaica (left foreground below) dominate the landscape, and may be associated with smaller shrubs, such as Barleria trispinosa. In the photo below, there is one B. trispinosa plant immediately below (on the right side) the acacia tree, and a second B. trispinosa plant to its right, more out in the open.  Coverdale realized that being situated immediately below a spiny acacia tree might be advantageous to B. trispinosa, which could be protected from the ravages of elephants and giraffes by the acacia thorns .

MRC landscape

Credit: Tyler Coverdale.

As you might guess by its name, B. trispinosa is itself a very spiny plant, which should help protect it from browsers.  Nonetheless, it still gets eaten, so Coverdale and his colleagues explored whether being under acacias would reduce how much it, and two other related species, got browsed.

Barleria trispinosa

Barleria trispinosa out in the open. Credit: Tyler Coverdale.

The first study was observational – a survey of the damage three species of Barleria suffered when they were under (associated with) acacia trees vs. unassociated with acacia trees. For each Barleria species, the researchers haphazardly chose 10 stems from eight associated and eight unassociated plants, and measured the proportion of these stems that showed physical evidence of being browsed.  As the figure below shows, browsing was sharply lower for each species when it was associated with an acacia plant.

CoverdaleFig1A

Percentage of stems damaged by browsers for three Barleria species in relation to whether they were associated or unassociated with an acacia tree.* indicates significant differences between means in all figures.

The understory plant community associated with acacias is much denser than the plant community out in the open, so the researchers wondered whether it was the acacia itself, or the other plants associated with it, that were providing protection. They set up an experiment using focal B. trispinosa plants with four treatments (A) unmanipulated control, (B) overstory removal, (C) overstory + understory removal, (D) a procedural control with overstory + understory removal, with the focal plant enclosed in a metal cage to protect it from predators (see Figure below).

CoverdaleS1

Coverdale and his colleagues ran the experiment for one month.  They discovered that removing overhanging acacia branches sharply increased herbivory, but the additional removal of understory neighbors had little additional effect.  Both the unmanipulated controls and procedural controls were unaffected.

CoverdaleFig1B

Change in % of stems browsed for (A) unmanipulated control (left bar), (B) overstory removal (second from left bar), (C) overstory + understory removal (second from right bar), (D) a procedural control (right bar).  Different letters above bars indicate significant differences between the mean values.

The researchers then investigated how useful these spines are to unassociated B. trispinosa plants. They set up another experiment with four types of spine treatments: (A) unmanipulated controls, (B) 50% spine removal, (C) 100% spine removal, (D) procedural control with 100% spine removal + enclosure within a predator-proof cage. These cages were vandalized shortly after the experiment was set up, so the researchers chose eight plants from a nearby plot (that had all predators excluded for a different experiment) as their procedural control. They discovered that spines are very useful to protect against predators in unassociated B. trispinosa.

CoverdaleFig1C

Change in % of stems browsed for (A) unmanipulated control (left bar), (B) 50% spine removal (second from left bar), (C) all spines removed (second from right bar), (D) procedural control (right bar).

If you were a plant living under the protection of an acacia tree, it would make sense for you to reduce your investment in thorns, so you could allocate more resources to growth and reproduction.  Does Barleria do this?

CoverdaleFig2

Several lines of evidence indicate that all three Barleria species reduce their investment in spines when associated with an acacia. First, a survey of spine density shows a reduced number of spines for all three species when they were associated with acacia trees (top graph).  Second, the spines that are present are significantly shorter in Barleria species associated with acacia trees (middle graph).  In a final survey, Coverdale and his colleagues cut all of the spines off of associated and unassociated Barleria.  For each plant, the researchers calculated the dry weight of spines and of all the other plant tissue.  For each Barleria species, the defensive investment – the ratio of spines to total mass, was substantially reduced in acacia-associated plants in comparison to unassociated plants (bottom graph).

Lastly, can plants react adaptively to browsing?  In other words, will understory plants produce more thorns if they are browsed?  To explore this question, the researchers used scissors to simulate moderate (25%) or heavy (50%) browsing.  They discovered a significant increase in spines produced by unassociated plants one month after clipping. Ecologists call this an induced defense. This induced defense is strongly suppressed in plants that have lived under the protection of acacia trees – in fact there was no significant response to experimental browsing in acacia-associated B. trispinosa plants. The researchers don’t know how long this suppression of induced responses persists. Would browsing induce increased spine growth in B. trispinosa six months, a year or two years after its protective acacia tree died?

Coverdale and his colleagues conclude that the overall benefit of association is positive to the plant populations.  Their studies show better survival and higher reproductive rates of acacia-associated understory plants. There is probably a cost associated with too many offspring competing for resources within a small area, as seedlings tend to grow within 1 meter of their parents.  However the reduction in defense costs probably overrides this cost of competition, leading to increased population size.  The researchers suggest a long-term study of population growth rates for acacia-associated and unassociated plants for several different species to see how general these effects are, and to explore whether other factors, such as soil moisture and nutrient levels influence the allocation and induction of defensive structures such as spines and thorns.

note: the paper that describes this research is from the journal Ecology. The reference is Coverdale, T. C., Goheen, J. R., Palmer, T. M. and Pringle, R. M. (2018), Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants. Ecology, 99: 1724-1736. doi:10.1002/ecy.2397. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Intertidal tussles: a shifting balance

As an omnivore with a research-oriented palate, I delight in consuming many different food types.  High on my list are crustaceans – in particular the American lobster, Homarus americanus.

BaillieLobster

A juvenile American lobster, Homarus americanus. Credit: C. Baillie.

However, another crustacean, the invasive Asian shore crab, Hemigrapsus sanguineus, threatens to disrupt my epicurean delight, by interfering with the growth and development of juvenile lobsters in the low intertidal zone in the north Atlantic. Christopher Baillie and Jonathan Grabowski have explored interactions between these lobsters and crabs to unravel how they might be influencing each other.

bailliecrab1.png

The invasive Asian shore crab, Hemigrapsus sanguineus. Credit: Rhode Island Marine and Estuarine Invasive Species Site.

The Asian shore crab was first detected off the New Jersey coast in 1988 and quickly spread from North Carolina to Maine. Their increase has coincided with a sharp decrease in the abundance of their rival green crabs over the same range. Baillie and Grabowski were concerned that the Asian shore crab could also be adversely affecting lobster populations. They did monthly surveys (May-October) of both lobster and crab densities in Dorothy Cove in Masachusetts, USA, between 2013 and 2017, and discovered that crab populations were increasing sharply at the same time that lobster populations were decreasing steadily.

BaillieFig1

Annual average densities of Asian shore crabs (dark gray) and American lobsters (light gray) from surveys at Dorothy Cove, Nahant, Massachusetts, USA, between 2013 and 2017. Error bars are 1 standard error.

The researchers wanted to know whether the increased number of Asian shore crabs was responsible for the lobster decline. Perhaps the two species competed with each other for shelter. Baillie and Grabowski set up experimental tanks, each containing a wire mesh bottom with a rectangular opening cut in the center, so that a burrow could be excavated.  They then introduced a single lobster or crab to the tank, and allowed it to dig a burrow in the cutout center (we’ll call this individual the resident).

Slide1

In one shelter experiment, the researchers compared the behavior of larger (mean carapace length = 24.7 cm) and smaller (mean carapace length = 9.3 cm) juvenile lobsters in the presence and absence of a variable number of crabs. They discovered that both larger and smaller lobsters spent most of the time in their burrow when no crabs were in the tank. However, introducing crabs was a major disruptor to their mellow existence, with both lobster size classes being more likely to abandon their residences when crabs were present.

BaillieFig3final

Mean (+ standard error) percentage of time spent in shelter by large juvenile lobsters (top graph) and small juvenile lobsters (bottom graph) in relation to absence (Control) or presence of different numbers of crabs.  Different letters above the bars indicate that the means are statistically different from each other.

The reasons for the decline in residence time were very different for large vs. small lobsters.  In an experiment with one large lobster pitted against one crab, resident lobsters initiated an average of 18.00 attacks against crabs, while resident crabs initiated an average of only 0.20 attacks against lobsters. Even if crabs were allowed to establish residency, when a lobster was introduced, it usually picked a fight with the resident crab. So large resident lobsters left their burrows to challenge intruding crabs. Lobsters managed to kill and eat two intruding crabs.

In contrast, smaller lobsters had a much different experience. Crabs attacked resident small lobsters and were able to displace them from their burrow. This was particularly the case when a greater number of crabs were added to the tank.  When eight crabs were added, the poor lobster was kicked out of its burrow, on average, almost 20 times within a six-hour trial.  Under these conditions, crabs attacked the resident lobster almost 40 times per trial.

BaillieFig4

Crab behavior towards a resident lobster in relation to the number of crabs (heterospecific competitors) introduced into the tank. (A) Mean number of times the lobster is displaced. (B) Mean number of fights initiated by an intruder crab. Error bars are 1 standard error. Different letters above the bars indicate that the means are statistically different from each other.

Baillie and Grabowski also conducted feeding trials – but only with a larger lobster pitted against an individual crab (a blue mussel – a preferred food item for both species – was the prey).  Lobsters were much more successful feeders than crabs, and actually increased their feeding rates in the presence of crabs, presumably having no interest in sharing the mussel with its competitor. Taken together, the shelter and feeding experiments suggest a reversal in dominance structure occurs over the course of lobster development.  The abundant Asian shore crab outcompetes small juvenile lobsters for shelter, but once lobsters attain a certain size, they can outcompete crabs for both shelter and food. We still don’t know, for sure, whether the decline in lobsters in the low intertidal zone at the study site was caused by the increase in crabs; the Asian shore crab may still be expanding its range, so it may be possible to more directly study changes in distribution at other sites both north and south of its current range. Fortunately for lobsters (and for lobster consumers), juveniles can also grow and flourish in deeper ocean waters, where Asian shore crabs are much less of a threat.

note: the paper that describes this research is from the journal Ecology. The reference is Baillie, C. J. and Grabowski, J. H. (2018), Competitive and agonistic interactions between the invasive Asian shore crab and juvenile American lobster. Ecology, 99: 2067-2079. doi:10.1002/ecy.2432. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Carbon dioxide’s complex personality

Carbon dioxide (CO2) deservedly gets a lot of bad press because it is responsible for much of the global warming Earth is currently experiencing.  Less publicized, but perhaps equally important, CO2 is acidifying oceans, thereby threatening the continued existence of some critical biomes such as coral reefs and kelp forests (acid interferes with the ability of many marine organisms to build their shells).  But carbon dioxide also has a kinder, gentler side, as it is an essential resource for plants, and in some cases higher CO2 levels can increase a plant’s ability to carry on photosynthesis.  Sean Connell and his colleagues explored this complex personality by studying a marine ecosystem that experiences naturally varying levels of CO2. High CO2 levels and acidity exist near CO2-emitting vents at the study site – a volcanic island (Te Puia o Whakaari) off the coast of New Zealand.

White_Island_James Shook [CC BY 2.5 (https-::creativecommons.org:licenses:by:2.5)], from Wikimedia Commons

The volcanic Te Puia o Whakaari off the coast of New Zealand’s north island. Credit: James Shook [CC BY 2.5 (https-//creativecommons.org/licenses/by/2.5)], from Wikimedia Commons.

The major players in this ecosystem are the kelp, Ecklonia radiata, several species of turf-forming algae, and two grazers, the snail, Eatoniella mortoni, and the urchin, Evechinus chloroticus.  The typical vegetation in the region is a mosaic of kelp forest, some scattered small patches of algal turf, and sea urchin barrens – hard rock without significant vegetation, a result of overgrazing by sea urchins.  In contrast, extensive algal mats carpeted the rocks near these vents, and the researchers hypothesized that high CO2 levels caused this shift in dominant vegetation.

IMG_5461

Sean Connell collects data in a habitat dominated by algal turf (and numerous fish). Credit: anonymous backpacker.

Connell and his colleagues chose two vents and two nearby control sites at a depth of 6-8 meters. The CO2 levels and acidification near the vents were approximately equal to the amount projected for the end of the 21stcentury, but there were no differences between vents and controls in temperature, salinity or nutrient concentrations. The researchers estimated photosynthetic rates for kelp and turf algae by measuring the rate of oxygen production. They also estimated snail consumption rates by caging them for 3 days and measuring how much algal turf they removed.  They used an analogous approach to measure sea urchin consumption rates.

Conditions at vents had a major impact on both producers and consumers.  Kelp production decreased slightly, while turf production increased sharply at vents (Figures A and B below).  Urchin density declined (almost to nonexistence) while gastropod density increased markedly at vents (Figures C and D).  Lastly, consumption rates (on a per individual basis) by urchins plummeted, while consumption rates by snails increased sharply at vents (Figures E and F).

ConnellFig3

Comparison of production and consumption at control sites vs. carbon dioxide emitting vents.

These patterns converted the normal mosaic of kelp forest, small algal turf patches and urchin barren into turf-dominated habitats.  Algal turf increased in size and frequency near the vents, while kelp forest shrank into near oblivion.

ConnellFig2

Frequency of patches of turf (light gray bars), urchin barren (medium gray) and kelp (black) in relation to patch size (diameter in meters) at control sites (top graph) and sites near vents (bottom graph).

These results can be pictured visually by the graph below.  Under conditions of present-day pH and CO2 levels, gross algal production is relatively low and urchin consumption is relatively high, which results in negligible net algal turf production (net production = gross production – urchin and gastropod consumption).  High CO2 levels sharply increase gross algal turf production while dramatically decreasing consumption by urchins.  Even though gastropod consumption increases slightly at vents, the overall effect on vents is a dramatic increase of net algal turf production. Consequently, the ecosystem experiences regime shift from kelp to algal turf domination.

ConnellFig1

Summary of effects of CO2 release by vents (bottom) vs Controls (top). Net algal production (red circle) = Gross algal production – urchin and gastropod consumption.  Net algal production in dark green zone is predicted to be turf-dominated (as is found near vents), light green is a mosaic, while white zone represents urchin barrens (low production and high consumption). Error bars are 1 standard error. 

Under current conditions, kelp is the dominant producer over turf algae in the near offshore ecosystem. High consumption by urchins keep the turf algae in check.  But near CO2 emitting vents, high levels of carbon dioxide have a dual effect on this ecosystem, disproportionately increasing turf algae production rate and decreasing urchin abundance and consumption rate.  This allows the competitively subordinate turf algae to replace the competitively dominant kelp, resulting in a dramatically changed ecosystem.  This occurs in the absence of an increase in ocean temperature.  Given that ocean temperature will increase sharply by 2100 (along with CO2 levels), many species interactions are expected to change in the next century, and ecosystem structure and functioning will be very different from what we observe today.

note: the paper that describes this research is from the journal Ecology. The reference is Connell, S. D., Doubleday, Z. A., Foster, N. R., Hamlyn, S. B., Harley, C. D., Helmuth, B. , Kelaher, B. P., Nagelkerken, I. , Rodgers, K. L., Sarà, G. and Russell, B. D. (2018), The duality of ocean acidification as a resource and a stressor. Ecology, 99: 1005-1010. doi:10.1002/ecy.2209 Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Eavesdropping on antshrikes

Growing up in the Spy vs. Spy era, and a bit later in the Watergate age, I developed a keen appreciation for clandestine operations, which I assumed at that time were unique to human culture.  As it turns out, eavesdropping is practiced by many different species for a variety of reasons. One important example occurs in bird flocks composed of several species of birds. Antshrikes (Thamnomanes ardesiacus) are sentinel species in multi-species flocks because they produce alarm calls when they spot a predacious raptor flying overhead, alerting other nearby birds of the threat. Ari Martinez and his colleagues wondered whether hanging out with antshrikes allowed these other bird species to expand their niches to forage in areas that might otherwise be too dangerous.

Alarm calling species Thamnomanes ardesiacus Photo cred E. Parra 600dpi (1)

An antshrike perched in the Amazonian rainforest. Credit: E. Parra.

This fear-based niche shift hypothesis makes two related predictions.  First, in the absence of antshrikes, the remainder of the flock should shift its range to areas with lower predation risk.  Second, without antshrikes some birds might leave the flock entirely, because without sentinel services they no longer benefit from hanging with other birds. To test these predictions, Martinez and his colleagues identified eight flocks of 5-8 species (including antshrikes) in a tropical lowland forest in southeastern Peru.  They established four removal flocks from which they removed all antshrikes after capturing them in mist nets. They left four control flocks, in which they captured all antshrikes, but then returned them to the flock (to control for the effects of handling).

Group banding and mist netting birds photo ced Micah Reigner

Research team mist-netting and measuring antshrikes.  Credit Micah Reigner

To determine where the flock was spending its time, researchers used a GPS device every 10 minutes to record the center of the flock. They also censused each flock for species composition from dawn to dusk for three days before removal and three days after removal. In control flocks, home range overlapped extensively (average of 69%) when comparing the first (pre-removal) and second (post-removal) three-day period. In removal flocks, there was only 8% overlap in home range, indicating that the remaining flock was shifting its range when antshrikes were gone.

MartinezFig1

Home ranges of a control flock (top) and a flock which had antshrikes removed (bottom). Red color indicates home range during the three day pre-removal period, while blue color indicates home range during the three day post-removal period.  Deeper colors indicate greater occupancy. 

But are the remaining species shifting their niches to safer locations when antshrikes are no longer available as sentinels? To answer this question the researchers measured the presence or absence of vegetation cover at different height intervals every 10 minutes at the center of the flock. Comparing the second (post-removal) to the first (pre-removal) period, the removal flocks (those without antshrikes) moved into understory vegetation (0-8 meters high) that was substantially denser than was the vegetation inhabited by the control flocks (those with antshrikes). Presumably, dense understory protects birds without sentinels from being spotted or captured by raptors flying overhead. These dense understory areas are usually associated with less tree cover at higher height intervals (above 16 meters), which allows more sunlight to reach the forest floor, resulting in lush vegetation growth.

MartinexFig3

Proportion change in vegetation cover occupied by flocks from pre-trial to post-trial period at different height intervals.  Positive numbers indicate an increase in vegetation density. Error bars are 95% confidence intervals. Data are based on the behavior of four control and four removal flocks.

Flocking occurrence is the proportion of time individuals of a particular species spend in flocks.  The fear-based niche shift hypothesis predicts that flocking occurrence should decrease when sentinel species are removed because the benefits of flocking are reduced for the remaining species. When the researchers compared post-removal to pre-removal time-periods, five species showed strong reductions in flocking occurrence for removal flocks in comparison to control flocks, two were unchanged, and one species showed an increase in flocking occurence.

MartinezFig2

Change in proportion flocking occurrence for eight different flocking species in control and removal flocks.  Error bars are 95% confidence intervals.  Chlorothraupis carmioli (CHCA), Epinecrophylla erythrura (EPER), Epinecrophylla leucophthalma (EPLE), Glyphorynchus sprirus (GLSP), Hylophilus ochraceiceps (HYOC), Myrmotherula longipennis (MYLO), Myrmotherula menetriesii (MYME), Xiphorhynchus elegans (XIEL).

The authors emphasize that though flocking occurrence decreased for most species, the flocks did remain intact, which indicates that there are probably other benefits from flocking besides the opportunity to eavesdrop. There might be safety in numbers – a decrease in individual mortality as group size increases, or the possibility that the remaining flock members do provide some information about imminent predator attacks.

Martinez and his colleagues conclude that sentinels help other bird species succeed in tropical rainforests, thriving in dangerous habitats where they might otherwise fear to tread.  These species may provide important ecosystem services, such as dispersing seeds and eating herbivorous insects that threaten plants that are the foundation of these tropical ecosystems.

note: the paper that describes this research is from the journal Ecology. The reference is Martínez, A. E., Parra, E. , Muellerklein, O. and Vredenburg, V. T. (2018), Fear‐based niche shifts in neotropical birds. Ecology, 99: 1338-1346. doi:10.1002/ecy.2217. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

 

A tale of too many ticks

Many people I know have had the unfortunate experience of a warm season bout with the following symptoms: fatigue, achy joints, headaches, dizziness, fever and night sweats. Some of these symptoms are part of the daily experience of someone who has reached my level of maturity (okay – age), but in combination they suggest infection by the bacterium Borrelia burgdorferi that is transmitted by Ixodes ticks, and causes Lyme disease.  So three years ago, when I experienced those symptoms, I went off to my doctor (after some prodding by my wife) who immediately prescribed a regime of antibiotics that is effective against Lyme. My region of the United States (southern Appalachians) is a center of Lyme infection, so the diagnosis was pretty easy, and thankfully, the antibiotics were effective.

Lyme 2016

Each dot represents one verified case of Lyme disease in the United States in 2016.  I live in the dark blotch in western Virginia.

Richard Ostfeld began investigating the ecology of Lyme disease as a result of a chance event.  About 26 years ago Ostfeld started a new project that explored how white-footed mice may control populations of the invasive forest pest, the gypsy moth.  Mice eat the moth pupae for a couple of weeks in mid-summer.  When he started trapping at the Cary Institute of Ecosystem Studies in New York, he was amazed to see tremendous burdens of larval blacklegged ticks attached to the white-footed mouse (Peromyscus leucopus).  At the field site there was a boom one year and a crash the following year in acorn abundance, which was followed, with a one year time lag, by a boom and a crash in mouse abundance.  Ostfeld wondered what role fluctuating mouse abundance might play in human risk of exposure to tick-borne disease, and how factors affecting mouse abundance might influence the system.

Mouse with 52 larval ticks closeup

This unfortunate mouse harbors 52 larval ticks. Credit: Ostfeld lab at Cary Institute.

Ixodes ticks have a two-year lifecycle, with eggs laid in the spring, six-legged larvae hatching out in summer, getting one blood meal from a rodent or bird host, and emerging as eight-legged nymphs the following spring.  Nymphs find themselves a second host in spring or summer, from which they suck more blood and ultimately metamorphose into adults during the fall season. Adults seek large mammalian hosts, such as white-tailed deer; females feed on the deer, mate with males (who generally don’t feed), lay eggs and die, usually the following spring.

img_7791.jpg

Human finger with (left to right) adult female, adult male, nymph and larval ticks. Credit: Ostfeld lab at Cary Institute.

What makes these ticks tick? Ostfeld, Taal Levi and their colleagues knew from previous work that biotic factors such as mice, acorns and deer were likely to be important, but that predators on mice might also play a role.  It also seemed likely that abiotic factors such as temperature, moisture and snow cover could also be important.  For 19 years, the researchers systematically collected data related to these factors from six large (2.25 ha) field plots at the Cary Institute. They used standard capture-mark-recapture methods to estimate rodent abundance, and data from the Cary Institute’s bow-hunting program to estimate deer abundance. They monitored the presence of carnivores with LED camera traps that were baited with cans of cat food.

coyote-camera-trap.jpg

Coyote captured on LED camera. Credit: Ostfeld lab at Cary Institute.

Lastly, the researchers needed to estimate tick abundance and the percentage of ticks that were infected with the Lyme disease bacterium, Borrelia burgdorferi.  To estimate tick abundance, the researchers systematically dragged 1-m2 white corduroy drag cloths across each plot every three weeks throughout the times of peak tick abundance. Ticks that are searching for a host (known as questing ticks) will grab onto the drag cloth, so in essence, drag cloth censuses provides an estimate of ticks that have not had a blood meal.  Tick infection rates were estimated by subjecting an average of 378 ticks per year to molecular analyses (initially direct immunofluorescence assay, and later quantitative PCR).

tick

Researchers sample for questing ticks by dragging a cloth across the forest floor. Credit: Ostfeld lab at Cary Institute.

Across the 19 years of the study, the density of infected nymphs was strongly correlated to mouse density the previous year, and weakly correlated with deer density two years previously.  Recall the details of the two-year life cycle; it takes a year to go from tick larva to nymph, and a second year to go from nymph to adult to eggs, so these time lags are not surprising. What is surprising is that the density of infected nymphs is negatively correlated with mouse density in the current year and with winter warmth.

OstfeldFig2

Density of infected ticks (x 100) per 100 m2 in relation to (far left) mouse density (per 2.25 ha) in the previous year, (2nd from left) mouse density in the current year, (2nd from right) winter warmth, and (far right) deer density two years previous.  Different color dots represent the six different field sites.

Ostfeld and his colleagues explain that during years of high mouse abundance, many nymphs were attached to rodent hosts, or had already had a blood meal, and thus were not collected on drag cloths. By using the abundant rodents as their secondary hosts, rather than people, high rodent abundance is actually decreasing the probability that the nymphs will infect a human. Infection of humans by adult ticks is less common than infection of humans by nymphs, because many nymphs don’t survive to adulthood, male adults do not feed, and adults are more likely than nymphs to be spotted and removed, due to their larger size.

Nymphal infection prevalence (NIP) measures the fraction or proportion of the nymphs within the community that are actually carrying the bacterium.  From a human perspective, a high NIP indicates that a tick bite is relatively likely to lead to Lyme disease. There was only a small relationship between rodent density the previous year and NIP, so the researchers decided to see if the composition of the predator community might influence NIP. They reasoned that foxes and bobcats were known to be major mouse predators, so by eating mice, they would be removing infected ticks from the population.  Raccoons and opossums have a double effect; they eat mice – though not as many as do foxes and bobcats.  In addition they are dilution hosts, in that they provide blood for nymphs, but do not serve as a vector to the bacterium.  Thus a community with all four of these predators was expected to reduce NIP. The effect of coyotes were more complex because they eat mice, which should reduce NIP, but they also eat or scare away other predators, such as foxes and opossums, which could increase NIP.

OstfeldFig4

Effect size of predator community structure on nymphal infection prevalence (NIP).  Top row animals are (left to right) fox, raccoon, opossum and bobcat.  Communities with coyotes (bottom five communities) tend to have higher NIP, particularly if they lack other predators.

In general, more diverse predator communities tended to have lower nymphal infection prevalence.  Communities with coyotes that also lacked some of the other predators tended to have the highest NIP values.

Ostfeld and his colleagues were surprised to discover that a warm and dry winter and spring season tended to depress tick abundance, while cold winters had little effect. Presumably, emerging nymphs can dry out under warm, dry conditions. The researchers were also surprised to observe the strong decrease in tick abundance associated with high mouse abundance in the current year. It is not uncommon for a boom in mouse abundance one year to be followed by a mouse population crash the next year.  When that occurs, there will be a large number of questing nymphs lurking in the vegetation for hosts, and thus the potential for a major outbreak of Lyme disease.

note: the paper that describes this research is from the journal Ecology. The reference is Ostfeld, R. S., Levi, T. , Keesing, F. , Oggenfuss, K. and Canham, C. D. (2018), Tick‐borne disease risk in a forest food web. Ecology, 99: 1562-1573. doi:10.1002/ecy.2386. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.