Vacation’s changing tides

Cindy and I and our dog (Cheyanne) recently returned from a two+ week vacation at North Carolina’s Outer Banks.  We stayed in Avon, which is about eight miles north of the iconic Cape Hatteras lighthouse in a large house with a great ocean view.  We got a large house, because we thought our kids might join us, but it turns out that one disadvantage of kids getting older is that their lives become more complex.  Anyhow, several friends stayed with us for a few days, and a grand time was had by all.

Cheyanne2

Cheyanne and I ponder the ocean’s vastness. Credit: Cindy Miller

But the point of this post is the trip home.  On Friday, we packed everything into our car, including Cheyanne, and began the eight-hour drive back to our home in Radford, VA.  At Rodanthe (about 15 miles north), traffic just stopped.  We sat in our car for a few minutes, disembarked, and spoke with many people walking by, who told us that the road (NC12) was flooded and covered with sand.  We had heard rumors of flooding, but since the sun was out and the wind relatively calm, we assumed that was all in the past.  Apparently the flooding was so bad that a motor home and the boat it was towing got totally caught up in the sand and water, and was wedged so efficiently that they could not even be towed out until serious excavation happened. That was not going to happen until Saturday.

IMG_4768

Moving the dunes off of the road. Credit: Cindy Miller.

Saturday at 6 PM we got the call that the road was open and we could head home.  We repacked the car, re-experienced Cheyanne’s baleful look, and set out, with an ETA of 3 AM at the earliest.  Alas the high tide came in, water breached the dunes, and a very kind police officer knocked on our window, imploring us to return to Avon and wait for a better day.  Cheyanne gave him a baleful look, but we obeyed.

img_4771.jpg

Reconstituted dunes.  Notice the tire tracks left by earth-moving machines. Credit: Cindy Miller.

The next morning we set out again; by now we could pack a car in just a few minutes.  Our peanut butter on toast dinner of the previous night had left us a bit peckish, so we stopped off for some pastries and cappuccinos. We headed north once again and this time we were able to pass through the Rodanthe flood, and several others along the way.  The water level was high, but our car had good ground clearance and our escape was relatively uneventful, but done at sub-breakneck speed.

IMG_4763

Riding away through Rodanthe’s rising tides. Credit: Cindy Miller.

 

Why was this happening?  The weather was beautiful – no rain, no wind and sunny skies.  It just doesn’t get any nicer than this at the Outer Banks.  As it turns out, there were two provocateurs.  First, there was subtropical storm Melissa several hundred miles to our east, passing harmlessly out to sea, but increasing sea levels.  Second, there was almost a full moon, which also tends to increase sea levels.  But that’s it!

That shouldn’t be enough.  In past years those two events might cause waves to crash to the dunes with increased vigor, but would not cause them to breach the dunes and spill onto the roads.  But those were past years, and now is the present, and sea levels along the North Carolina coast have risen by about one foot in the past 50 years.  Here are some data from Wilmington, NC – about 150 miles south of Avon.

OBX1

Rising sea levels measured at Wilmington, North Carolina. Credit: National Oceanic and Atmospheric Administration and SeaLevelRise.org

You should note two things.  First, there is substantial year-to-year variation in sea levels. Second, rates of sea level rise are accelerating.  Scientists at the National Oceanic and Atmospheric Administration and the US Army Corps of Engineers expect this trend to continue.  Here is the prognosticated change in sea levels between now and 2050 at Oregon Inlet (just a few miles north of Rodanthe).

OBX2

Forecast sea level change between 2016 and 2050. Credit: National Oceanic and Atmospheric Administration, U. S. Army Corps of Engineers and SeaLevelRise.org

This is very bad.  I’ve been vacationing at the Outer Banks for about 25 years; it has become a part of who I am.  I don’t want to give up on this spectacular part of the world, but we must act.  We cannot continue sticking our heads in the sand (which we can now oftentimes find on NC12), pretending that climate change is a construct of the liberal press or elite intelligentsia.

The first step in dealing with a problem is acknowledging that it exists. Climate change is here, and its impact is increasing. An estimated 50 million climate change refugees around the globe are being forced to abandon their homes. More will follow, including our neighbors from North Carolina’s Outer Banks. For their sake, and ours, let’s acknowledge the problem, and focus our resources, energies and talents to reducing the damage in the short term, and dealing with the causes of climate change over the next decades and centuries.

Decomposition: it’s who you are and where you are

“Follow the carbon” is a growing pastime of ecologists and environmental researchers worldwide. In the process of cellular respiration, organisms use carbon compounds to fuel their metabolic pathways, so having carbon around makes life possible.  Within ecosystems, following the carbon is equivalent to following how energy flows among the producers, consumers, detritivores and decomposers. In soils, decomposers play a central role in energy flow, but we might not appreciate their importance because many decomposers are tiny, and decomposition is very slow.  We are thrilled by a hawk subduing a rodent, but are less appreciative of a bacterium breaking down a lignin molecule, even though at their molecular heart, both processes are the same, in that complex carbon enters the organism and fuels cellular respiration.  However. from a global perspective, cellular respiration produces carbon dioxide as a waste product, which if allowed to escape the ecosystem, will increase the pool of atmospheric carbon dioxide thereby increasing the rate of global warming. So following the carbon is an ecological imperative.

As the world warms, trees and shrubs are colonizing regions that previously were inaccessible to them. In northern Sweden, mountain birch forests (Betula pubescens) and birch shrubs (Betula nana) are advancing into the tundra, replacing the heath that is dominated by the crowberry, Empetrum nigrum. As he began his PhD studies, Thomas Parker became interested in the general question of how decomposition changes as trees and shrubs expand further north in the Arctic. On his first trip to a field site in northern Sweden he noticed that the areas of forest and shrubs produced a lot of leaf litter in autumn yet there was no significant accumulation of this litter the following year. He wondered how the litter decomposed, and how this process might change as birch overtook the crowberry.

ParkerView

One of the study sides in autumn: mountain birch forest (yellow) in the background, dwarf birch (red) on the left and crowberry on the right. Credit: Tom Parker.

Several factors can affect leaf litter decomposition in northern climes.  First, depending on what they are made of, different species of leaves will decompose at different rates.  Second, different types of microorganisms present will target different types of leaves with varying degrees of efficiency.  Lastly, the abiotic environment may play a role; for example, due to shade and creation of discrete microenvironments, forests have deeper snowpack, keeping soils warmer in winter and potentially elevating decomposer cellular respiration rates. Working with several other researchers, Parker tested the following three hypotheses: (1) litter from the more productive vegetation types will decompose more quickly, (2) all types of litter decompose more quickly in forest and shrub environments, and (3) deep winter snow (in forest and shrub environments) increase litter decomposition compared to heath environments.

To test these hypotheses, Parker and his colleagues established 12 transects that transitioned from forest to shrub to heath. Along each transect, they set up three 2 m2 plots – one each in the forest, shrub, and heath – 36 plots in all. In September of 2012, the researchers collected fresh leaf littler from mountain birch, shrub birch and crowberry, which they sorted, dried and placed into 7X7 cm. polyester mesh bags.  They placed six litter bags of each species at each of the 36 plots, and then harvested these bags periodically over the next three years. Bags were securely attached to the ground so that small decomposers could get in, but the researchers had to choose a relatively small mesh diameter to make sure they successfully enclosed the tiny crowberry leaves. This restricted access to some of the larger decomposers.

ParkerLitterBags

Some litter bags attached to the soil surface at the beginning of the experiment. Credit: Tom Parker.

To test for the effect of snow depth, the researchers also set up snow fences on nearby heath sites.  These fences accumulated blowing and drifting snow, creating a snowpack comparable to that in nearby forest and shrub plots.

Parker and his colleagues found that B. pubescens leaves decomposed most rapidly and E. nigrum leases decomposed most slowly.  In addition, leaf litter decomposed fastest in the forest and most slowly in the heath.  Lastly, snow depth did not  influence decomposition rate.

ParkerEcologyFig1

(Left graph) Decomposition rates of E. nigrum, B. nana and B. pubescens in heath, shrub and forest. (Right graph) Decomposition rates of E. nigrum, B. nana and B. pubescens in heath under three different snow depths simulating snow accumulation at different vegetation types: Heath (control), + Snow (Shrub) and ++ Snow (Forest) . Error bars are 1 SE.

B. pubescens in forest and shrub lost the greatest amount (almost 50%) of mass over the three years of the study, while E. nigrum in heath lost the least (less than 30%).  However, B. pubescens decomposed much more rapidly in the forest than in the shrub between days 365 and 641. The bottom graphs below show that snow fences had no significant effect on decomposition.

ParkerEcologyFig2

Percentage of litter mass remaining (a, d) E. nigrum, (b, e) B. nana, (c, f) B. pubescens in heath, shrub, or forest. Top graphs (a, b, c) are natural transects, while the bottom graphs (d, e, f) represent heath tundra under three different snow depths simulating snow accumulation at different vegetation types: Heath (control), + Snow (Shrub) and ++ Snow (Forest) . Error bars represent are 1SE. Shaded areas on the x-axis indicate the snow covered season in the first two years of the study.

Why do mountain birch leaves decompose so much more than do crowberry leaves?  The researchers chemically analyzed both species and discovered that birch leaves had 1.7 times more carbohydrate than did crowberry, while crowberry had 4.9 times more lipids than did birch. Their chemical analysis showed much of birch’s rapid early decomposition was a result of rapid carbohydrate breakdown. In contrast, crowberry’s slow decomposition resulted from its high lipid content being relatively resistant to the actions of decomposers.

ParkerResearchers

Researchers (Parker right, Subke left) harvesting soils and litter in the tundra. Credit: Jens-Arne Subke.

Parker and his colleagues did discover that decomposition was fastest in the forest independent of litter type. Forest soils are rich in brown-rot fungi, which are known to target the carbohydrates (primarily cellulose) that are so abundant in mountain birch leaves.  The researchers propose that a history of high cellulose litter content has selected for a biochemical environment that efficiently breaks down cellulose-rich leaves. Once the brown-rot fungi and their allies have done much of the initial breakdown, another class of fungi (ectomycorrhizal fungi) kicks into action and metabolizes (and decomposes) the more complex organic molecules.

The result of all this decomposition in the forest, but not the heath, is that tundra heath stores much more organic compounds than does the adjacent forest (which loses stored organic compounds to decomposers).  As forests continue their relentless march northward replacing the heath, it is very likely that they will introduce their efficient army of decomposers to the former heathlands.  These decomposers will feast on the vast supply of stored organic carbon compounds, release large quantities of carbon dioxide into the atmosphere, which will further exacerbate global warming. This is one of several positive feedbacks loops expected to destabilize global climate systems in the coming years.

note: the paper that describes this research is from the journal Ecology. The reference is Parker, T. C., Sanderman, J., Holden, R. D., Blume‐Werry, G., Sjögersten, S., Large, D., Castro‐Díaz, M., Street, L. E., Subke, J. and Wookey, P. A. (2018), Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline. Ecology, 99: 2284-2294. doi:10.1002/ecy.2442. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Recovering soils suffer carbon loss

When dinosaurs roamed the Earth, and I was in high school, acid rain became big news.  Even my dad, who as an industrial chemist believed that industry seldom sinned, acknowledged that he could see how coal plants could release sulfur (and other) compounds, which would be converted to strong acids, borne by prevailing winds to distant destinations, and deposited by rain and snow into soils. Forest ecosystems in North America and Europe are happily, albeit slowly, recovering from the adverse effects of acid deposition, but there are some causes for concern.  At the Hubbard Brook Experimental Forest in New Hampshire, USA, researchers experimentally remediated some of the impacts of acid deposition by adding calcium silicate to a watershed (via helicopter!). A decade later, this treatment had caused a 35% decline in the total carbon stored in the soil. This result was very unexpected and alarming, as this could mean that acid-impacted temperate forests may become major sources of CO2, with more carbon running off into streams, and some becoming atmospheric CO2, as the effects of acid rain wane. Richard Marinos and Emily Bernhardt wanted to determine exactly what caused this carbon loss to better understand how forests will behave in the future as they recover from acidification.

hubbrook

The forest at Hubbard Brook in the Autumn. Credit: Hubbard Brook Ecosystem Study at hubbardbrook.org

The problem is that calcium and acidity (lower pH is more acid: higher pH is more alkaline) have different and complex effects on plants, soil microorganisms and the soils in which they live. Several previous studies demonstrated that higher soil pH (becoming more alkaline) caused an increase in carbon solubility, while higher calcium levels caused carbon to become less soluble. Soluble organic carbon forms a tiny fraction of total soil carbon, but is very important because it can be used by microorganisms for cellular respiration, and also can be leached from ecosystems as runoff. In general, soil microorganisms benefit as acidic soils recover because heavy metal toxicity is reduced, enzymes work better, and mycorrhizal associations are more robust.  Complicating the picture even more, both elevated calcium and increased pH have been associated with increased plant growth, but increased calcium is also associated with reduced fine root growth.

To help unravel this complexity, Marinos and Bernhardt experimentally tested the effects of increasing pH and increased calcium on soil organic carbon (SOC) solubility, microbial activity and plant growth.  They collected acidic soil from Hubbard Brook Experimental Forest, which formed three distinct layers: leaf litter on top, organic horizon below the leaf litter, and mineral soil below the organic horizon.

soil_excavation.jpg

Soil excavation site at Hubbard Brook. Credit: Richard Marinos.

The researchers then filled 100 2.5-liter pots with these three soil layers (in correct sequence) and planted 50 pots with sugar maple saplings, leaving 50 pots unplanted.  Pots were moved to a greenhouse, and that November given one of five treatments: calcium chloride addition (Ca treatment), potassium hydroxide addition (alkalinity treatment), Ca + alkalinity treatment combined, a deionized water control, and a potassium chloride control. The potassium chloride control had no effect, so we won’t discuss it further.

plants_outside

Potted sugar maple saplings used for the experiments. Credit Richard Marinos.

The following July, Marinos and Bernhardt harvested all of the pots, carefully separating plant roots from the soil, and analyzing the organic horizon and mineral soil levels separately (there wasn’t enough leaf litter remaining for analysis). The researchers measured SOC by mixing soil from each pot with deionized water, centrifuging at high speed to extract the water-soluble material, combusting the material at high temperature and measuring how much CO2 was generated. The result is termed water extractable organic carbon (WEOC).

Remember that previous studies had shown that higher calcium levels decreased carbon solubility, while higher alkalinity increased carbon solubility. Surprisingly, Marinos and Bernhardt found that in unplanted pots, the Ca treatment reduced WEOC in both soil layers, while the alkalinity treatment decreased WEOC in the organic horizon, but not in mineral soil. In pots planted with maple saplings, the Ca treatment had no effect on WEOC, while the alkalinity treatment, and the Ca + alkalinity treatment, increased WEOC markedly.

marinosfig1

Water-Extractable Organic Carbon in soil without plants (left column) and with plants (right column). Top graphs are organic horizon soils and bottom graphs are mineral horizon soils. Error bars are 1 standard error.

The next question was how might soil microorganisms fit into the plant-soil dynamics?

marinosfig2b

Soil respirations rates (top) over the short term (days 1-7 post-harvest) and (bottom) the long term (days 8-75 post-harvest). Error bars are 1 standard error.

Soil microorganisms use carbon products for cellular respiration, so the researchers expected that soils with more SOC would have higher respiration rates.  They measured soil respiration 1, 2, 4, 8, 16, 35 and 72 days after the harvest, so they could evaluate both short-term and long-term effects. In unplanted pots, soil respiration rates were unaffected by treatment.  But in planted pots, the alkalinity treatment increased soil respiration rates considerably in the short term (top graphs), but much less so in the long-term (bottom graphs). Putting the WEOC data from the figure above together with the respiration data from the two figures to your left, you can see that in pots with plants, increased alkalinity was associated with more SOC and higher respiration rates.

The researchers weighed the saplings after harvest and discovered that the sugar maples grew best in soils treated with calcium. Two previous studies had treated fields with calcium silicate and found better sugar maple growth in the treated fields.  Marinos and Bernhardt argue that their study provides evidence that it is the Ca enrichment, and not the increased pH, that caused increased growth for both of those studies.

Perhaps the most surprising finding is that higher alkalinity increased soil microbial activity only in pots with plants, and had no effect on soil microbial activity in pots without plants. Somehow, the plants in an alkaline environment are increasing the rate of microbial respiration, perhaps by releasing carbohydrates produced by photosynthesis into the soil, which could then stimulate decomposition of SOC by the microorganisms. Finding that this effect largely disappeared a few days after harvest (bottom graph above), supports the idea that the plants are releasing a substance that helps microorganisms carry on cellular respiration. But this idea awaits further study. In the meantime, we have a better understanding of how forest recovery from acid rain affects one aspect of the carbon cycle, though many other human inputs may interact with this recovery process.

note: the paper that describes this research is from the journal Ecology. The reference is Marinos, R. E. and Bernhardt, E. S. (2018), Soil carbon losses due to higher pH offset vegetation gains due to calcium enrichment in an acid mitigation experiment. Ecology, 99: 2363-2373. doi:10.1002/ecy.2478. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Climate changes a bird’s life in shrinking grasslands

Back in graduate school, a couple of my grad student buddies and I would get together to fish for brown trout in the Kinnickinnic River in western Wisconsin.  We were students at the University of Minnesota (Twin Cities), but the Kinni was the closest trout stream.  Tired of catching small brown trout, we consulted a trout fishing map and discovered that the headwaters of the Kinni were rich in brook trout. So early one morning, map in hand, we followed strange paths and found our sacred brook trout haven. Alas, the only thing it was rich in was corn, now about two feet high – though there was a modest depression where trout waters once had flowed. Our personal depression was perhaps more than modest – having been robbed of brook trout, and the opportunity to experience some pristine waters flowing through a beautiful grassland.

Grasslands, one of the biomes native to parts of Wisconsin and Minnesota, are globally one of the most endangered biomes, because they usually are relatively easy to convert into farmland and suburban developments. Native grasslands harbor a wide biological diversity; consequently conservation biologists are concerned about their continued loss.

OLYMPUS DIGITAL CAMERA

Cool-season grassland in southwest Wisconsin. Credit: John Dadisman.

Ben Zuckerberg, Christine Ribic and Lisa McCauley wanted to know how environmental factors influenced the nesting success of grassland birds, in particular, because as obligate ground nesters, they might be susceptible to changing  weather conditions that will be affecting the climate in coming decades.  A nest built on the ground is much less insulated from the environment than one built in or on a tree or even a ledge.

Bobolink 7 days (Carolyn Byers)

Seven day old bobolink chicks in a ground nest. Credit: Carolyn Byers.

Zuckerberg and his colleagues used Google Scholar and the ISI Web of Science to comb the literature (1982-2015) for studies that explored the nest success of obligate grassland birds in the United States. They identified 12 bird species from 81 individual studies of 21,000 nests. Based on their experience and the literature, both precipitation and temperature were likely to influence nest success, which is the proportion of nests that fledge at least one young. They considered three precipitation time periods: (1) Bioyear – previous July through April of the breeding season, (2) May of the breeding season, (3) June – August of the breeding season. They considered breeding season temperatures during May, and during the period from June-August. The researchers were also interested in the size of the grassland (grassland patch size), reasoning that a larger grassland might provide more diverse microclimates, so, for example, a bird might be able to find a dry microhabitat for nesting in a large grassland, even in a wet breeding season.

ZuckFig1

Map of the identity and location of species considered for this study.

The researchers discovered that both temperature and precipitation were important.  Nest success increased steadily with bioyear precipitation (Figure (a) below).  Presumably, more rain led to more plant growth and more insect survival, which would help feed the young.  Taller plants could also help shade or hide the nests. In contrast, nest success declined sharply with precipitation during spring and summer of the breeding season (Figure (b) and (c)). Heavy rains during the breeding season can flood nests, and also decrease the foraging efficiency of parents who might need to spend more time incubating nests during rainstorms. Lastly, extreme (low or high) May temperatures depressed nest success, which was highest at intermediate temperatures (Figure (d)). Egg viability depends on maintaining a constant temperature, and the parents may be more challenged to thermoregulate at extreme temperatures.  Temperatures later in the breeding season did not affect nest success.

ZuckFig2

Effects of (a) bioyear precipitation (previous July – April of the breeding season), (b) May precipitation during the breeding season, (c) June – August precipitation during the breeding season, and (d) May temperature on nest success. Shaded area represents 95% confidence interval.

But all is not straightforward in the grassland nest success world. These main findings about precipitation and temperature interacted with grassland size in interesting ways.  For example high bioyear precipitation, which overall increased nest success, only did so for smaller grassland patches (dashed line in top graph below), but not for larger patches (solid line).  Extreme May temperatures had different effects on nest success in relation to grassland patch size.  Low May temperatures were associated with high nest success in small patches (dashed line in bottom graph) and with low nest success in large patches (solid line).  High May temperatures were associated with high nest success in large patches, and with low nest success in small patches.

ZuckFig3

Predicted nest success of grassland birds in relation to bioyear precipitation (top graph) and May temperature (bottom graph) in relation to grassland patch size.  Solid lines represent large grasslands, while dashed lines represent small grasslands.  Shaded area is 95% confidence interval.

The researchers were surprised to discover that patch size affected how weather influenced grassland bird nesting success. Some of the patterns seem intuitively logical; for example, in unusually hot breeding seasons birds had higher nest success in larger grasslands than in smaller grasslands.  Presumably, birds were more likely to find a cooler microclimate for their nests in a large grassland.  However it is puzzling why in unusually cold breeding seasons birds had higher nest success in smaller grasslands. The researchers are planning a follow-up study to better document and measure the existence of microclimates in grasslands of different sizes, and explore how different microclimates influence the nesting success of vulnerable grassland birds.  Finding that warmer temperatures and drought generally reduce nest success to the greatest extent in small grassland patches is strong incentive for conservation mangers to establish large core grasslands as a tool to maintain bird populations in the wake of present and future changes to the climate.

note: the paper that describes this research is from the journal Conservation Biology. The reference is Zuckerberg, B. , Ribic, C. A. and McCauley, L. A. (2018), Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conservation Biology, 32: 872-882. doi:10.1111/cobi.13089. Thanks to the Society for Conservation Biology for allowing me to use figures from the paper. Copyright © 2018 by the Society for Conservation Biology. All rights reserved.

 

Carbon dioxide’s complex personality

Carbon dioxide (CO2) deservedly gets a lot of bad press because it is responsible for much of the global warming Earth is currently experiencing.  Less publicized, but perhaps equally important, CO2 is acidifying oceans, thereby threatening the continued existence of some critical biomes such as coral reefs and kelp forests (acid interferes with the ability of many marine organisms to build their shells).  But carbon dioxide also has a kinder, gentler side, as it is an essential resource for plants, and in some cases higher CO2 levels can increase a plant’s ability to carry on photosynthesis.  Sean Connell and his colleagues explored this complex personality by studying a marine ecosystem that experiences naturally varying levels of CO2. High CO2 levels and acidity exist near CO2-emitting vents at the study site – a volcanic island (Te Puia o Whakaari) off the coast of New Zealand.

White_Island_James Shook [CC BY 2.5 (https-::creativecommons.org:licenses:by:2.5)], from Wikimedia Commons

The volcanic Te Puia o Whakaari off the coast of New Zealand’s north island. Credit: James Shook [CC BY 2.5 (https-//creativecommons.org/licenses/by/2.5)], from Wikimedia Commons.

The major players in this ecosystem are the kelp, Ecklonia radiata, several species of turf-forming algae, and two grazers, the snail, Eatoniella mortoni, and the urchin, Evechinus chloroticus.  The typical vegetation in the region is a mosaic of kelp forest, some scattered small patches of algal turf, and sea urchin barrens – hard rock without significant vegetation, a result of overgrazing by sea urchins.  In contrast, extensive algal mats carpeted the rocks near these vents, and the researchers hypothesized that high CO2 levels caused this shift in dominant vegetation.

IMG_5461

Sean Connell collects data in a habitat dominated by algal turf (and numerous fish). Credit: anonymous backpacker.

Connell and his colleagues chose two vents and two nearby control sites at a depth of 6-8 meters. The CO2 levels and acidification near the vents were approximately equal to the amount projected for the end of the 21stcentury, but there were no differences between vents and controls in temperature, salinity or nutrient concentrations. The researchers estimated photosynthetic rates for kelp and turf algae by measuring the rate of oxygen production. They also estimated snail consumption rates by caging them for 3 days and measuring how much algal turf they removed.  They used an analogous approach to measure sea urchin consumption rates.

Conditions at vents had a major impact on both producers and consumers.  Kelp production decreased slightly, while turf production increased sharply at vents (Figures A and B below).  Urchin density declined (almost to nonexistence) while gastropod density increased markedly at vents (Figures C and D).  Lastly, consumption rates (on a per individual basis) by urchins plummeted, while consumption rates by snails increased sharply at vents (Figures E and F).

ConnellFig3

Comparison of production and consumption at control sites vs. carbon dioxide emitting vents.

These patterns converted the normal mosaic of kelp forest, small algal turf patches and urchin barren into turf-dominated habitats.  Algal turf increased in size and frequency near the vents, while kelp forest shrank into near oblivion.

ConnellFig2

Frequency of patches of turf (light gray bars), urchin barren (medium gray) and kelp (black) in relation to patch size (diameter in meters) at control sites (top graph) and sites near vents (bottom graph).

These results can be pictured visually by the graph below.  Under conditions of present-day pH and CO2 levels, gross algal production is relatively low and urchin consumption is relatively high, which results in negligible net algal turf production (net production = gross production – urchin and gastropod consumption).  High CO2 levels sharply increase gross algal turf production while dramatically decreasing consumption by urchins.  Even though gastropod consumption increases slightly at vents, the overall effect on vents is a dramatic increase of net algal turf production. Consequently, the ecosystem experiences regime shift from kelp to algal turf domination.

ConnellFig1

Summary of effects of CO2 release by vents (bottom) vs Controls (top). Net algal production (red circle) = Gross algal production – urchin and gastropod consumption.  Net algal production in dark green zone is predicted to be turf-dominated (as is found near vents), light green is a mosaic, while white zone represents urchin barrens (low production and high consumption). Error bars are 1 standard error. 

Under current conditions, kelp is the dominant producer over turf algae in the near offshore ecosystem. High consumption by urchins keep the turf algae in check.  But near CO2 emitting vents, high levels of carbon dioxide have a dual effect on this ecosystem, disproportionately increasing turf algae production rate and decreasing urchin abundance and consumption rate.  This allows the competitively subordinate turf algae to replace the competitively dominant kelp, resulting in a dramatically changed ecosystem.  This occurs in the absence of an increase in ocean temperature.  Given that ocean temperature will increase sharply by 2100 (along with CO2 levels), many species interactions are expected to change in the next century, and ecosystem structure and functioning will be very different from what we observe today.

note: the paper that describes this research is from the journal Ecology. The reference is Connell, S. D., Doubleday, Z. A., Foster, N. R., Hamlyn, S. B., Harley, C. D., Helmuth, B. , Kelaher, B. P., Nagelkerken, I. , Rodgers, K. L., Sarà, G. and Russell, B. D. (2018), The duality of ocean acidification as a resource and a stressor. Ecology, 99: 1005-1010. doi:10.1002/ecy.2209 Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Too much of a good thing is killing Monarch butterflies

There was a time in the mid-Pleisticine when a photo of an ecological event was an awesome novelty, and a movie of an ecological event even more so.  Dodderers of an ecological bent (myself included), can vividly recall viewing a series of photos or a movie, either in a seminar or in an ancient ecology text, of a blue jay consuming a monarch butterfly, Danaus plexippus.  Consumption is immediately followed by explosive vomiting, as the cardenolides within the monarch butterfly claim another victim.  The monarch sequesters these cardenolide toxins from its larval food (milkweed), and incorporates them into its tissues as a means of protecting itself from predators – presumably blue jays learn from this very aversive experience.  I should point out that the individual sacrificial butterfly enjoys no fitness from this learning event – which raises some evolutionary questions we will not explore at the present.

Karen Oberhauser

Five instars (stages of development) of monarch caterpillars on a milkweed leaf. Credit: Karen Oberhauser

Rather we turn our attention to the relationship between milkweed, monarchs, and climate change. In several places in this blog we’ve talked about how climate change has influenced the behavior or physiology of a single species. For example, my first blog (Jan 31, 2017) discusses how increasing temperatures create more females in a loggerhead turtle population. But there are fewer studies that explore how climate change influences the ecological landscape, ultimately affecting interactions between species.  Along these lines, Matt Faldyn wondered if increased air temperature would change the chemical constitution of milkweed in a way that might influence monarch populations.  As he describes, “With milkweed toxicity, there is a ‘goldilocks’ zone where monarchs prefer to feed on milkweed that produce enough toxins in order to sequester these (cardenolide) chemicals as an antipredator/antiparasite defense, while also avoiding reaching a tipping point of toxicity where feeding on very toxic milkweeds negatively impacts monarch fitness.” He expected that at higher temperatures, milkweed would become stressed, and be physiologically unable to sustain normal levels of cardenolide production.

Faldynnative

Monarch butterfly feeds on a native milkweed, Asclepias incarnata. Credit: Teune at the English Language Wikipedia.

For their research, Faldyn and his colleagues worked with two milkweed species.  Asclepias incarnata is a common, native milkweed found throughout the monarch butterfly’s range in the eastern and southeastern United States.  Asclepias curassavica is an exotic species that has become established in the southern United States.  In contrast to A. incarnata, A. curassavica does not die back over the winter months; consequently some monarch populations are no longer migratory, relying on A. curassavicato provide them with a year round food supply.

Faldynexotic

The exotic milkweed, Asclepias curassavica. Credit: 2016 Jee & Rani Nature Photography (License: CC BY-SA 4.0)

To protect against herbivory, milkweeds have two primary chemical deterrants: (1) the already-mentioned cardenolides, which are toxic steroids that disrupt cell membrane function, and (2) release of sticky latex, which can gum up caterpillar mouthparts and actually trap young caterpillars.

field_noborderii.jpgThe researchers wanted to simulate climate change under field conditions, so they created open-top chambers with plexiglass plates that functioned much like mini-greenhouses, into which they placed one milkweed plant that was covered with butterfly netting.  This setup raised ambient temperatures by about 3°C during the day and 0.2°C at nighttime.  Control plots were single milkweed plants with butterfly netting. Half of the plants were native milkweed, and the other half were the exotic species.

For their experiments, Faldyn and his colleagues introduced 80 monarch caterpillars (one per plant) and allowed them to feed normally until they pupated.  Pupae were brought into the lab and allowed to metamorphose into adults.

MattGood

Matt Faldyn holds two monarch butterflies in the laboratory. Credit Matt Faldyn.

At normal (ambient) temperatures, monarchs survived somewhat better on exotic milkweed.  But at warmer temperatures, there is a strikingly different picture. Monarch survival is unaffected by warmer temperatures on native milkweed, but is sharply reduced by warmer temperatures on exotic milkweed (top graph below). The few that managed to survive warm temperatures on exotic milkweed grew much smaller, based on their body mass and forewing length (middle and bottom graph below)

FaldynFig1

Survival (top), adult mass (middle) and forewing length (bottom) of monarch butterflies raised under normal (ambient) and warmed temperatures.  Error bars are 95% confidence intervals.

Both milkweed species increased production of both types of chemicals over the course of the experiment. But by the end of the experiment, the exotic species released 3-times the quantity of latex and 13-times the quantity of cardenolides than did the native milkweed species.

FaldynFig2

Average amount of latex released at the beginning and end of the experiment.  Error bars are 95% confidence intervals.

FaldynFig2

Average cardenolide concentration at the beginning and end of the experiment.

The researchers argue that the exotic milkweed, Asclepias curassavica, may become an ecological trap for monarch butterflies, in that it attracts monarchs to feed on it, but will, under future warmer conditions, result in dramatically reduced monarch survival. Interestingly, these results are not what Faldyn originally expected; recall that he anticipated that temperature-stressed plants would reduce cardenolide production. The tremendous increase in cardenolide production in exotic milkweed at warmer temperatures may simply be too much toxin for the monarchs to process. The researchers predict that as climate warms, milkweed ranges will expand further north into Canada, and lead to northward shifts of monarch populations as well.  They urge nurseries to emphasize the distribution of native rather than exotic milkweed, so that monarchs will be less likely to become victims of this ecological trap.

note: the paper that describes this research is from the journal Ecology. The reference is Faldyn, M. J., Hunter, M. D. and Elderd, B. D. (2018), Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology. doi:10.1002/ecy.2198. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

“Notes from Underground” – cicadas as living rain gauges

Given recent discussions between Donald Trump and Kim Jong-un about whose button is bigger, many of us with entomological leanings have revisited the question of what insects are most likely to dominate a post-nuclear world. Cicadas have a developmental life history that predisposes them to survival in the long term because some species in the eastern United States spend many subterranean years as juveniles (nymphs), feeding on the xylem sap within plants’ root systems. Magicicada nymphs live underground for 13 or 17 years, depending on the species, before digging out en masse, undergoing one final molt, and then going about the adult business of reproduction. This life history of spending many years underground followed by a mass emergence has not evolved to avoid nuclear holocausts while underground, but rather to synchronize emergence of billions of animals. Mass emergence causes predator satiation, an anti-predator adaptation in which predators are gastronomically overwhelmed by the number of prey items, so even if they eat only cicadas and nothing else, they still are able to consume only a small fraction of the cicada population.

magicicadaarthur-d-guilani.png

Mass Magicicada emergence picturing recently-emerged winged adults, and the smaller lighter-colored exuviae (exoskeletons) that are shed during emergence. Credit: Arthur D. Guilani.

Less well-known are the protoperiodical cicadas (subfamily Tettigadinae) of the western United States that are abundant in some years, and may be entirely absent in others. Jeffrey Cole has studied cicada courtship songs for many years, and during his 2003 field season noted that localities that had previously been devoid of cicadas now (in 2003) hosted huge numbers of six or seven different species. He returned to those sites every year and high diversity and abundance reappeared in 2008 and 2014. This flexible periodicity contrasted with their eastern Magicicada cousins, and he wanted to know what stimulated mass emergence.

okanagana-cruentifera-1.jpg

clidophleps-wrighti-teneral.jpg

Protoperiodical cicadas studied by Chatfield-Taylor and Cole.  Okanagana cruentifera (top) and Clidophleps wrighti (bottom). Credit Jeffrey A. Cole.

Cole and his graduate student, Will Chatfield-Taylor, considered two hypotheses that might explain protoperiodicity in southern California (where they focused their efforts). The first hypothesis is that cicada emergence is triggered by heavy rains generated by El Niño Southern Oscillation (ENSO), a large-scale atmospheric system characterized by high sea temperature and low barometric pressure over the eastern Pacific Ocean. ENSO has a variable periodicity of 4.9 years, which roughly corresponds to the timing Cole observed while doing fieldwork. The second hypothesis recognized that nymphs must accumulate a set amount of xylem sap from their host plants to complete development. Sap availability depends on precipitation, and this accumulation takes several years in arid habitats. So while ENSO may hasten the process, the key to emergence is a threshold amount of precipitation over a several year timespan.

Working together, the researchers were able to identify seven protoperiodical species by downloading museum specimen data (including where and when each individual was collected) from two databases (iDigBio and SCAN). They also used data from several large museum collections, which gave them evidence of protoperiodical cicada emergences back to 1909. Based on these data, Chatfield-Taylor and Cole constructed a map of where these protoperiodical cicadas emerge.

ColeFig1

Maps of five emergence localities discussed in this study.

The researchers tested the hypothesis that protoperiodical cicada emergences follow heavy rains triggered by ENSO by going through their dataset to see if there was a correlation between ENSO years and mass cicada emergences. Of 20 mass cicada emergences since 1918, only five coincided with ENSO events, which is approximately what would be expected with a random association between mass emergences and ENSO. Scratch hypothesis 1.

Let’s look at the second hypothesis. The researchers needed reliable precipitation data between years for which they had good evidence that there were mass emergences of their seven species. Using a statistical model, they discovered that 1181 mm was a threshold for mass emergences, and that three years was the minimum emergence interval regardless of precipitation. Only after 1181 mm of rain fell since the last mass emergence, summed over at least three years, would a new mass emergence be triggered.

ColeFig2

Cumulative precipitation over seven time periods preceding cicada emergence.

The nice feature of this model is that it makes predictions about the future. For example, the last emergence occurred in the Devil’s punchbowl vicinity in 2014. Since then that area has averaged 182.2 mm of precipitation per year. If those drought conditions continue, the next mass emergence will occur in 2021 at that locality, which is longer than its historical average. Only time will tell. Hopefully Mr. Trump and Mr. Jong-un will be able to keep their fingers off of their respective buttons until then.

note: the paper that describes this research is from the journal Ecology. The reference is Chatfield-Taylor, W. and Cole, J. A. (2017), Living rain gauges: cumulative precipitation explains the emergence schedules of California protoperiodical cicadas. Ecology, 98: 2521–2527. doi:10.1002/ecy.1980. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2017 by the Ecological Society of America. All rights reserved.