Snails grow large to fight fear

In a recent post (Jan 12), I discussed research showing that song sparrow parents reduce provisioning to their offspring when threatened by predators, ultimately reducing offspring survival rates.  But in a turnabout that highlights the natural world’s dazzling diversity, a recent study by Sarah Donelan and Geoffrey Trussell revealed a very different impact of fear on the development of snail offspring. Donelan had worked as Trussell’s laboratory technician for two years and became fascinated by the egg capsules laid by the carnivorous snail Nucella lapillus, an ecologically important species in rocky intertidal communities. Earlier work had shown that predator-induced fear reduced snail feeding and growth rates, so Donelan decided that for her PhD work she would see how predator-induced fear influenced offspring development.

img_3411.jpg

Adult Nucella alongside ca. 100 egg capsules. Credit: Sarah Donelan.

The researchers recognized that the fear environment experienced by parents before or during reproduction, and by the embryos during early development, could influence growth and development of those embryos. At their research site along the Massachusetts, USA coast, the predatory green crab, Carcinus maenas, can be a source of fear for these adult and embryonic snails. Donelan and Trussell exposed snails to fear by housing separately one male and one female snail in adjacent protected perforated containers (with six blue mussels in each container to feed them) that were set within a large plastic bucket. This bucket also had a somewhat larger perforated container (the risk chamber) containing the dreaded green crab (and two snails to feed it). The control risk chamber had two snails, but no crab.

IMG_3274

Experimental setup with buckets containing egg capsules in perforated cages experiencing different exposure to fear. Credit: Sarah Donelan.

In late spring of 2015 and 2016, field-collected female and male snails were matched to create a total of 80 parental pairs. Donelan and Trussell set up experiments to explore the effects of parental experience with predation risk, embryonic experience with predation risk, and duration of embryonic experience.

Parent snails were exposed to a risk chamber (with a crab in the experimental group, and without a crab in the control group) for three days, and then placed together for four days (without risk) to mate. If an egg capsule was laid, the researchers removed it, and immediately exposed it to an experimental or control risk chamber for a week. Embryonic risk duration was further manipulated by continuing to expose half of the egg capsules to risk for a total of six weeks. The table below summarizes the treatments received by parents and offspring.

DonelanTableGood

DonelinFig1

Mean (+ standard error) shell length (top graph) and tissue mass (bottom graph) of snail embryos exposed to predation risk. Parents were either exposed (solid circles) or not exposed (open circles) to risk before mating.

 

When parents were not exposed to risk, but their offspring were exposed, these offspring had shorter shells and reduced tissue mass compared to all other groups. When both parents and offspring were exposed to risk, offspring shell length increased by 8% and offspring mass increased by a whopping 40% over risk-exposed offspring whose parents were not exposed to risk (left data points in figures a and b). If embryos were not exposed to risk, parental exposure had no significant impact on embryonic development (right data points on figures a and b). Embryonic risk duration had no impact on development.

 

In addition, risk-exposed offspring of risk-exposed parents emerged from their egg capsules an average of 4.1 days sooner than other offspring.

Donelanfig4

Mean (+standard error) number of days until emergence of snail offspring that experienced the presence or absence of predation risk during early development.  Their parents were exposed to risk (solid circle) or no risk (open circle) before mating.

What could be causing these differences in size and rate of development? Donelan and Trussell hypothesized that embryonic snails could grow larger and more quickly if they were somehow able to reduce their metabolic rate. With a reduction in metabolic rate, more energy could be diverted to growth and development, resulting in larger and faster-growing snails. The researchers used an oxygen meter to measure oxygen consumption rates of individual egg capsules (from the eight different treatments in the first experiment) six weeks after deposition, about a week before embryos would begin to emerge. They exposed some of the capsules to predation risk during the experiment (current risk graph below), and left other capsules unexposed. When tested under risky conditions, capsules from parents who were exposed to risk, and that experienced risk as embryos during early development, had 56% lower metabolic rates than the other three groups (left graph), and similarly low metabolic rates as capsules tested without risk (right graph).

Donelanfig2

Mean (+ standard error) respiration rate of egg capsules that were (left graph) or were not (right graph) exposed to current predation risk.  During early development, the embryos in these capsules experienced risk or no risk, and were produced by parents exposed to risk (solid circles) or no risk (open circles) before mating.

Overall, parental experience with predation risk enhances offspring growth and development in the presence of risk. If the parents lack this exposure, risk-exposed offspring suffer the costs associated with small size and slower development. Currently Donelan and Trussell are trying to figure out what these costs are. Smaller snails have less energy reserves, may feed on a less diverse group of prey, and are less likely to remain in safer habitats than are larger juveniles. But we still don’t know whether these effects on early stages of life have lasting impacts as a snail gets older and larger. More generally, we don’t know whether there are similar types of interactions between parental and embryonic experiences of other stressors, most notably environmental stresses that are already being imposed by climate change.

note: the paper that describes this research is from the journal Ecology. The reference is Donelan, S. C. and Trussell, G. C. (2018), Synergistic effects of parental and embryonic exposure to predation risk on prey offspring size at emergence. Ecology, 99: 68–78. doi:10.1002/ecy.2067. Thanks to the Ecological Society of America for allowing me to use figures from the paper. Copyright © 2018 by the Ecological Society of America. All rights reserved.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s